Answer:

Explanation:
Close to Earth's surface, the force of gravity that pulls an object towards the ground is
(2)
where
m is the mass of the object
g is the acceleration due to gravity, which is
close to Earth's surface
This is an approximation of the general formula of gravity valid only close to Earth's surface. The more general formula is
(1)
where
G is the gravitational constant
M is the Earth's mass
m is the object's mass
r is the distance of the object from Earth's center
At the Earth's surface,
r = R (Earth's radius), and by calling the following factor

we see that eq.(1) becomes eq.(2).
Explanation:
The emf is equal to the work done on the charge per unit charge (ϵ=dWdq) when there is no current flowing. Since the unit for work is the joule and the unit for charge is the coulomb, the unit for emf is the volt (1V=1J/C).
Answer: E = 941738.537J
Explanation:
to begin,
given that the mass = 2320 pound = 1052.334 kg
Δh = 110 ft = 33.528 m
given that distance (d) = 1283 ft = 391.058 m
also the speed (v) is 65 mph = 29.058 m/s
force (F) = 87 pounds = 386.995 N
from our knowledge in work energy theory;
E = Fd + 1/2mv² + mgh
E = (386.995 × 391.058) + (1/2×1052.334×29.058²) + (1052.334×9.81×33.528)
E = 151337.491 + 444278.2 + 346122.84
E = 941738.537J
i hope this helps, cheers.
Answer:
λ = 28,14 m
Explanation:
To find the wavelength of the wave you use the following formula:
(1)
v: speed of the wave = 1,97 m/s
λ: wavelength
f: frequency of the wave = 0,07 Hz
You replace the values of v and f in the equation (1) and solve for λ:

hence, the wavelength of the wave is 28,14 m
Answer:
A rocket taking off from earth which pushes gasses in one direction and the rocket in
the other