Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
Answer:
v =7.1 m/s
Explanation:
Given that
u = 3.35 m/s
t= 5 s
a= 0.75 m/s²
The final velocity = v
We know v = u +at
v=final velocity
u=initial velocity
Now by putting the values in the above equation
v = 3.35 + 0.75 x 5 m/s
v =7.1 m/s
Therefore the final velocity will be 7.1 m/s
Answer:

Explanation:


If the sun considered as x=0 on the axis to put the center of the mass as a:

solve to r1


Now convert to coordinates centered on the center of mass. call the new coordinates x' and y' (we won't need y'). Now since in the sun centered coordinates the angular momentum was

where T = orbital period
then L'(x',y') = L(x) by conservation of angular momentum. So that means

Since
then

The smallest unit that makes up matter is an atom!
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.