The formula to be used for this problem is as follows:
E = hc/λ, where h is the Planck's constant, c is the speed of light and λ is the wavelength. Also 1 aJ = 10⁻¹⁸ J
0.696×10⁻¹⁸ = (6.62607004×10⁻³⁴ m²·kg/s)(3×10⁸ m/s)/λ
Solving for λ,
λ = 2.656×10⁻⁷ m or <em>0.022656 nm</em>
Silver is A precious shiny grayish-white metal, the chemical element of atomic number 47. Silver is sometimes found in nature in metallic form. It forms a sulfide mineral Ag 2 S called acanthite. Mineral forms of silver include sulfides formed with antimony called Stephanite, miargyrite and pyrargyrite. Silver is a naturally occurring element on the periodic table and can be found in natural deposits throughout the world. As such, it was discovered in 5000 BC, but not invented, by people.
<span> 26 protons, 30 neutrons, 26 electrons</span>
I think the answer is 101.2 L
Answer: 11.5 moles of carbon
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of carbon = 6.02 x 10^23 atoms
Z moles = 6.93 x 10^24 atoms
To get the value of Z, cross multiply:
(6.93 x 10^24 atoms x 1mole) = (6.02 x 10^23 atoms x Z moles)
6.93 x 10^24 = (6.02 x 10^23 x Z)
Z = (6.93 x 10^24) ➗ (6.02 x 10^23)
Z = 1.15 x 10
Z = 11.5 moles
Thus, there are 11.5 moles of carbon.