The major drawback of fossil fuels is that they warm the planet i.e. they cause global warming.
The reaction typically gives off heat and light as well. The general equation for a complete combustion reaction is:
Fuel + O2 → CO2 + H2O + ENERGY
<h3>
Disadvantages of Fossil fuels</h3>
The term "fossil fuels" refers to flammable organic geologic formations, including dead organic matter that has been buried hundreds of feet beneath sediment.
- Fossil fuel emissions include various oxides, such as carbon, nitrogen, and sulfate, which cause acid rain and harm the soil's fertility and water quality.
- Both coal and petroleum burning discharge a significant amount of pollutants into the atmosphere, contributing to pollution levels.
- Gases like carbon dioxide are released through the burning of fossil fuels, which aids in climate change.
To view similar questions on Fossil fuels, refer to:
brainly.com/question/14339391
#SPJ4
Answer: it is 5.5 mg
Explanation:
you have to multiply the mass value by 1000
The statement that defines the specific heat capacity for a given sample is the quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
<h3>What is specific heat capacity?</h3>
Specific heat capacity is the of heat to increase the temperature per unit mass.
The formula to calculate the specific heat is Q = mct.
The options are attached here:
- The temperature of a given sample is 1 %.
- The temperature that a given sample can withstand.
- The quantity of heat that is required to raise the sample's temperature by 1 °C1 °C (Kelvin).
- The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Thus, the correct option is 4. The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Learn more about specific heat capacity
brainly.com/question/1747943
#SPJ1
The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.