The point where the lines intersect is (0, 0)
First lets see the pythagorean identities
![sin^2 \Theta + cos^2 \Theta =1](https://tex.z-dn.net/?f=%20sin%5E2%20%5CTheta%20%2B%20cos%5E2%20%5CTheta%20%3D1%20)
So if we have to solve for sin theta , first we move cos theta to left side and then take square root to both sides, that is
![sin^2 \Theta = 1-cos^2 \Theta => sin \theta = \pm \sqrt{1-cos^2 \Theta}](https://tex.z-dn.net/?f=%20sin%5E2%20%5CTheta%20%3D%201-cos%5E2%20%5CTheta%20%3D%3E%20sin%20%5Ctheta%20%3D%20%5Cpm%20%5Csqrt%7B1-cos%5E2%20%5CTheta%7D%20)
Now we need to check the sign of sin theta
First we have to remember the sign of sin, cos , tan in the quadrants. In first quadrant , all are positive. In second quadrant, only sin and cosine are positive. In third quadrant , only tan and cot are positive and in the last quadrant , only cos and sec are positive.
So if theta is in second quadrant, then we have to positive sign but if theta is in third or fourth quadrant, then we have to use negative sign .
Answer:
The answer is D.
Step-by-step explanation:
the points on the graph are, (-2,0), (0,8), (1,9) and (4,0).
2 times 10^4 means 2 with 4 zeroes after it or 20000
4 times 10^6=4 with 6 zeros after it or 400000
compare
20000 and 4000000
we can see that 4000000 is 200 times of 20000
therefor the answer is C
we can also do
(4 times 10^6)/(2 times 10^4)=4/2 times (10^6)/(10^4)=2 times 10^2=200
answer is C
Answer:
8.7 units
Step-by-step explanation:
Given is a right angled triangle (because the segment with 5 units length is tangent to circle. Tangent is perpendicular to RADIUS or diameter)
Let the length of the diameter be d units
By Pythagoras Theorem:
![d = \sqrt{ {10}^{2} - {5}^{2} } \\ = \sqrt{100 - 25} \\ = \sqrt{75} \\ = 8.66025404 \\ = 8.7 \: units](https://tex.z-dn.net/?f=d%20%3D%20%20%20%5Csqrt%7B%20%7B10%7D%5E%7B2%7D%20-%20%20%7B5%7D%5E%7B2%7D%20%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B100%20-%2025%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B75%7D%20%5C%5C%20%20%3D%20%208.66025404%20%5C%5C%20%20%3D%208.7%20%5C%3A%20units)