Answer: Option (3) is the correct answer.
Explanation:
Aerobic organisms are the organisms which survive and grow in the presence of oxygen.
When oxidation of glucose occurs in the presence of oxygen then it is known as aerobic respiration.
In aerobic respiration, food releases energy to produce ATP which is necessary for cell activity. There is complete breakdown of glucose in aerobic respiration that is why more energy is released. Therefore, aerobic organisms become active.
Thus, we can conclude that characteristics very active, efficient use of energy describes aerobic organisms.
Answer:Write and balance the equation
4Fe + 3O2 -> 2Fe2O3
0.32 mol Fe x 2 mol Fe2O3 / 4 mol Fe =
0.16 mol of Fe2O3
Explanation:
(60)/(60+5.05)=.922367 C
1-0.922367=0.07763259 H
(0.922367)(78.12)=72.05534204 C
(0.07763259)(78.12)=6.06 H
72.05534204/(12.01)=6 C
6.06/1.01=6 H
Empirical= CH
Molecular=C6H6
Answer: The statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Explanation:
A strong acid upon dissociation gives a weak conjugate base. This can also be said as stronger is the acid, weaker will be its conjugate base or vice-versa.
Hydrofluoric acid is a strong base as it dissociates completely when dissolved in water.
For example, 
The conjugate base is
which is a weak base.
Acetic acid is a weak acid as it dissociates partially when dissolved in water. So, the conjugate base of acetic acid is a strong base.

Thus, we can conclude that the statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Answer:
M(Fe₂O₃) = 159.70 g/mol
M(CO) = 28.01 g/mol
M(Fe) = 55.85 g/mol
M(CO₂) = 44.01 g/mol
Explanation:
We can calculate the molar mass of a compound by summing the molar masses of the elements that form it.
Fe₂O₃
M(Fe₂O₃) = 2 × M(Fe) + 3 × M(O) = 2 × 55.85 g/mol + 3 × 16.00 g/mol = 159.70 g/mol
CO
M(CO) = 1 × M(C) + 1 × M(O) = 1 × 12.01 g/mol + 1 × 16.00 g/mol = 28.01 g/mol
Fe
M(Fe) = 1 × M(Fe) = 1 × 55.85 g/mol = 55.85 g/mol
CO₂
M(CO₂) = 1 × M(C) + 2 × M(O) = 1 × 12.01 g/mol + 2 × 16.00 g/mol = 44.01 g/mol