1.T
2.F
3.T
I think I think Im not complety sure sorry
<u>Answer:</u> The standard potential of the cell is 0.77 V
<u>Explanation:</u>
We know that:

The substance having highest positive
reduction potential will always get reduced and will undergo reduction reaction.
The half reaction follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u>
( × 2)
To calculate the
of the reaction, we use the equation:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
Putting values in above equation follows:

Hence, the standard potential of the cell is 0.77 V
Answer: Electrovalent or Ionic Compounds
Explanation:
Electrovalent Compounds Form bonds that are characterised by transfer of electrons from metallic atoms to non-metal licenses atoms during a chemical reaction.
The metallic atom after donating their valence electrons, become positively charged, while the non-metal license atoms becomes negatively charged after acquiring extra electrons.
A typical example of electrovalent compounds can be found between the association of Group 1(Alkali Metals) elements and the Group 7(Halogen Family) elements.
Transport of Na+ from a place of low concentration to a place of higher concentration. <u>This is the right answer.</u>
<u />
The sodium-potassium pump is the most common and well-known example of active transport. At the cell membrane, the sodium-potassium pump moves 3 sodium ions out of the cell and two potassium ions into the cell per ATP. Examples of active transport include the uptake of glucose in the human intestine and the uptake of minerals and ions into the root hair cells of plants.
One of the greatest examples of active transport is the movement of calcium ions out of cardiomyocytes. Cells secrete proteins such as enzymes, antibodies, and various other peptide hormones. Amino acids are transported across the intestinal mucosa of the human intestine. The movement of ions or molecules across cell membranes to regions of a higher concentration is assisted by enzymes and requires energy.
Learn more about Active transport here:-brainly.com/question/25802833
#SPJ1
Fluorine! It's highly reactive, since it has 7 electrons and wants an extra electron to fill its valence shell.