1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnyKZ [126]
3 years ago
15

Describe any new ways you can change the polarity of the three-atom molecule.

Chemistry
1 answer:
yan [13]3 years ago
5 0

-  By changing three atom bond angle , we can change molecular polarity. if bond angle is 120° and all atom has same electronegativity, the resultant polarity ( dipole moment ) become zero. we can change bond anngle either less than or greater than 120°, but not exactly 120

-  Replacing one or more atom with different atoms having electro negativity values also make molecular poles.

-  By placing molecules under external electric field or magnetic field also causes to the molecule.

You might be interested in
I need help with the question in the photo!!
Y_Kistochka [10]

Answer:

a semi-crystalline structure is formed, which holds the water molecules apart, making ice less dense than liquid water, such that it floats. This means that it insulates the water beneath, allowing organisms in the liquid water to survive. Cohesion is the tendency of molecules within a substance to ‘ stick together

explanation:

4 0
3 years ago
Read 2 more answers
A charged particle is known as a(n) ______.
lubasha [3.4K]

Answer:

electric charge

Explanation:

6 0
2 years ago
Consider the reaction Mg(s) + I2 (s) → MgI2 (s) Identify the limiting reagent in each of the reaction mixtures below:
Lapatulllka [165]

Answer:

a) Nor Mg, neither I2 is the limiting reactant.

b) I2 is the limiting reactant

c) <u>Mg is the limiting reactant</u>

<u>d) Mg is the limiting reactant</u>

<u>e) Nor Mg, neither I2 is the limiting reactant.</u>

<u>f) I2 is the limiting reactant</u>

<u>g) Nor Mg, neither I2 is the limiting reactant.</u>

<u>h) I2 is the limiting reactant</u>

<u>i) Mg is the limiting reactant</u>

Explanation:

Step 1: The balanced equation:

Mg(s) + I2(s) → MgI2(s)

For 1 mol of Mg we need 1 mol of I2 to produce 1 mol of MgI2

a. 100 atoms of Mg and 100 molecules of I2

We'll have the following equation:

100 Mg(s) + 100 I2(s) → 100MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

b. 150 atoms of Mg and 100 molecules of I2

We'll have the following equation:

150 Mg(s) + 100 I2(s) → 100 MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 100 Mg atoms. There will remain 50 Mg atoms.

There will be produced 100 MgI2 molecules.

c. 200 atoms of Mg and 300 molecules of I2

We'll have the following equation:

200 Mg(s) + 300 I2(s) →200 MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 200 I2 molecules. There will remain 100 I2 molecules.

There will be produced 200 MgI2 molecules.

d. 0.16 mol Mg and 0.25 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.16 mol of I2. There will remain 0.09 mol of I2.

There will be produced 0.16 mol of MgI2.

e. 0.14 mol Mg and 0.14 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.14 mol of Mg and 0.14 mol of I2. there will be produced 0.14 mol of MgI2

f. 0.12 mol Mg and 0.08 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.08 moles of Mg. There will remain 0.04 moles of Mg.

There will be produced 0.08 moles of MgI2.

g. 6.078 g Mg and 63.455 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 6.078 grams / 24.31 g/mol = 0.250 moles

Number of moles I2 = 63.455 grams/ 253.8 g/mol = 0.250 moles

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.250 mol of Mg and 0.250 mol of I2. there will be produced 0.250 mol of MgI2

h. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 2.00 grams/ 253.8 g/mol = 0.00788 moles

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.00788 moles of Mg. There will remain 0.03322 moles of Mg.

There will be produced 0.00788 moles of MgI2.

i. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 20.00 grams/ 253.8 g/mol = 0.0788 moles

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.0411 moles of Mg. There will remain 0.0377 moles of I2.

There will be produced 0.0411 moles of MgI2.

4 0
3 years ago
I need some help with chemistry. Let me know if you are good at it!
tekilochka [14]

Answer:

I think im good at it i have an A in the class

Explanation:

lol

3 0
2 years ago
Because of its high reactivity which element is normally obtained by the electrolysis
katrin [286]

<span>Lithium has a property of high reactivity and to obtain lithium is through electrolysis of its fused salts. Because lithium is very reactive, it is not found free so electrolysis is use to split it apart to get it.  Moreover, Lithium is an alkali metal with single valence electron that is easily given up to form cation, which make it a good conductor of heat and electricity.</span>

<span> </span>

8 0
2 years ago
Other questions:
  • Paint thinners, gasoline, and glue are common forms of ___________
    9·1 answer
  • Consider two aqueous solutions of NaCl. Solution 1 is 4.00 M and solution 2 is 0.10 M. In what ratio (solution 1 to solution 2)
    10·1 answer
  • What is the molarity of a solution that contains 20 grams of salt dissolved in 3.0 L of solution? The molar mass of water is 18g
    8·2 answers
  • Using the Arrhenius concept of acids and bases, identify the Arrhenius acid and base in each of the following reactions: KOH(aq)
    10·2 answers
  • A 19.45 gram sample of copper is heated in the presence of excess iodine. A metal iodide is formed with a mass of 58.30 g. Deter
    10·1 answer
  • Calculate the theoretical yield for the amount of sodium carbonate produced as a result of this chemical reaction. Record your f
    6·1 answer
  • A buffer is a solution that: Select one: a. Results from mixing a strong acid and a strong base. b. When added to another soluti
    12·1 answer
  • Which of the following would increase the surface area of a solid so that it dissolves faster?
    10·1 answer
  • 50 POINTS !! I have a science project that I need help with its called pH
    14·2 answers
  • A student proposes creating a buffer by dissolving 0.010mol of NaClO4(s) in 100.mL of 0.100MHClO4. Explain why the resulting sol
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!