Answer:
8.99×10^-7m
Explanation:
The wavelength can be calculated using the expression below
E=hcλ
Where E= energy= 2.21 x 10^-19 J.
C= speed of light= 3x10^8 m/s
h= planks constant= 6.626 × 10^-34 m2 kg / s
E=hcλ
λ= E/(hc)
Substitute for the values
λ=( 2.21 x 10^-19 )/(6.626 × 10^-34 × 3x10^8 )
= 8.99×10^-7m
The dichloromethane (DCM) has less density than water and also the polarity of water is much more than DCM. So the mixture of water and dichloromethane will always be a heterogeneous mixture. In the mixture dichloromethane will be always up of the water layer. The volume of the separatory funnel which contains the mixture of DCM and water must have to be more than the total volume of the liquids thus the volume of the funnel will be more than (50+50) = 100mL.
The caution have to consider during the separation are-
1. The separatory funnel have to shake well with lid and have to settle down for some times until the two liquid separated.
2. The lid should be open very slowly as the vapor pressure of DCM is more and it will float on the water.
3. After this the stopcock should be opened and slowly the water will come out first followed by DCM.
CxHy + O2 --> x CO2 + y/2 H2O
Find the moles of CO2 : 18.9g / 44 g/mol = .430 mol CO2 = .430 mol of C in compound
Find the moles of H2O: 5.79g / 18 g/mol = .322 mol H2O = .166 mol of H in compound
Find the mass of C and H in the compound:
.430mol x 12 = 5.16 g C
.166mol x 1g = .166g H
When you add these up they indicate a mass of 5.33 g for the compound, not 5.80g as you stated in the problem.
Therefore it is likely that either the mass of the CO2 or the mass of H20 produced is incorrect (most likely a typo).
In any event, to find the formula, you would take the moles of C and H and convert to a whole number ratio (this is usually done by dividing both of them by the smaller value).
A mixture is a material system made up of two or more different substances, which are mixed but not combined chemically. A mixture refers to the physical combination of two or more substances in which the identities of the individual substances are retained.
Hope this helps!
Please give brainliest!
Special properties of water are its high heat capacity and heat of vaporization, its ability to dissolve polar molecules, its cohesive and adhesive properties, and its dissociation into ions that leads to generating pH. Understanding these characteristics of water helps to elucidate its importance in maintaining life.