The distance decreases as the time increases
Answer:
I = Δq / t
Explanation:
The quantity of electricity i.e charge is related to current and time according to the equation equation:
Q = It
Δq = It
Where:
Q => is the quantity of electricity i.e charge
I => is the current.
t => is the time.
Thus, we can rearrange the above expression to make 'I' the subject. This is illustrated below:
Δq = It
Divide both side by t
I = Δq / t
The speed of water can be split into vertical and horizontal speed components:

Due to the force of gravity, the y component will be parabolic. The x component will be linear:

To find when the water hits the ground 2.5m away, set y= 0 and x = 2.5
Answer:
Explanation:
Parameters given:
Mass of Puck 1, m = 1 kg
Mass of Puck 2, M = 1 kg
Initial velocity of Puck 1, u = 20 m/s
Initial velocity of Puck 2, U = 0 m/s
Final velocity of Puck 1, v = 5 m/s
Since we are told that momentum is conserved, we apply the principle of conservation of momentum:
Total initial momentum of the system = Total final momentum of the system
mu + MU = mv + MV
(1 * 20) + (1 * 0) = (1 * 5) + (1 * V)
20 = 5 + V
V = 20 - 5 = 15 m/s
Puck 2 moves with a velocity of 15 m/s
Energy in a machine can be something technical like a wire or something went wrong with the system