1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
2 years ago
8

Infrared and ultraviolet waves have different frequencies.

Physics
1 answer:
algol132 years ago
3 0

Answer:

For infrared and ultraviolet waves have different frequencies. Both types of wave can have harmful effects on human beings. Describe the harmful effects of infrared and ultraviolet waves, relating them to the frequencies of the waves. Medical studies indicate that prolonged IR exposure can lead to lens, cornea and retina damage, including cataracts, corneal ulcers and retinal burns, respectively. To help protect against long-term IR exposure, workers can wear products with IR filters or reflective coatings.When you look at the EM spectrum, UV waves are quite a bit smaller in wavelength than infrared, and x-rays/gamma rays are even smaller. Therefore, UV waves are probably causing more harm than infrared waves, and x-rays/gamma rays are probably doing even more damage.

                                              <u><em>Thank You</em></u>  

                                     Please mark me Brainliest

You might be interested in
How can we produce energy by turning a turbine?​
maw [93]
Wind turbines work on a simple principle: instead of using electricity to make wind—like a fan—wind turbines use wind to make electricity. Wind turns the propeller-like blades of a turbine around a rotor, which spins a generator, which creates electricity.
7 0
3 years ago
Which of the following is most useful to determine how much energy is being used by a circuit in a given amount of time?
user100 [1]

Answer:

The answer is A.

Explanation:

5 0
3 years ago
A dog walks 12 meters to the east and then 16 meters back to the west for this motion what is the distance moved What is the mag
FinnZ [79.3K]

The distance is 28 meters, and the displacement is -4.

For the distance it would be 12 + 16 = 28.

For the displacement it would be 12 - 16 = -4.

would really appreciate a brainliest! Hope this helped!

6 0
3 years ago
Choose all facts that increase the orbital velocity of a vessel around planet B. Bigger mass of planet B smaller mass of planet
telo118 [61]

Answer:

- Bigger mass of planet B  

- orbiting closer to planet B

Explanation:

The orbital velocity of the vessel around the planet can be found by equalizing the force of gravity between the vessel and the planet and the centripetal force:

G\frac{mM}{r^2}=m\frac{v^2}{r}

where

G is the gravitational constant

m is the mass of the vessel

M is the mass of the planet

r is the distance between the vessel and the centre of the planet

v is the orbital velocity of the vessel

Re-arranging the formula, we find an expression for v:

v=\sqrt{\frac{GM}{r}}

We see that:

- the bigger the mass of the planet, M, the bigger the velocity

- the bigger the distance between the vessel and the planet, r, the smaller the velocity

So, the correct choices that increase the orbital velocity are:

- Bigger mass of planet B  

- orbiting closer to planet B

6 0
3 years ago
A car moving at a speed of 36 km/h reaches the foot of a smooth
boyakko [2]

Answer:

d = 10.2 m

Explanation:

When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

Kinetic\ Energy\ of\ the \ Car = Work\ Done\ while\ moving\ up\ the\ plane\\\frac{1}{2}mv^{2} = Fd

where,

m = mass of car

v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)

v = 10 m/s

F = force on the car in direction of inclination = W Sin θ

W = weight of car = mg

θ = Angle of inclinition = 30°

d = distance covered up the ramp = ?

Therefore,

\frac{1}{2}mv^{2} = mgdSin\theta\\\frac{1}{2}v^{2} = gdSin\theta\\\frac{1}{2}(10\ m/s)^{2} = d(9.81\ m/s^{2}) Sin\ 30^{0}

<u>d = 10.2 m</u>

4 0
2 years ago
Other questions:
  • What location on earth that is directly hit by the light during a summer solstice?
    13·1 answer
  • Based on what you have just read, why is studying atoms and their parts and particles helpful to people?
    12·2 answers
  • How fast would the car need to go to double its kinetic energy?
    13·2 answers
  • A 0.850 kg mass is placed on a
    14·1 answer
  • If the mass of a planet is 0.231 mE and its radius is 0.528 rE, estimate the gravitational field g at the surface of the planet.
    8·1 answer
  • What is the awnser to that question
    15·2 answers
  • A train travelling at 20 m/s has 2 000 000 J of kinetic energy. What is the mass of<br> the train?
    5·2 answers
  • Un engrane que gira con una velocidad de 20 rad/s, es acelerado durante 5 segundos hasta alcanzar una velocidad de 35 rad/s
    6·1 answer
  • Pushing a baby on a swing is easier than pushing an adult on the same swing.
    6·2 answers
  • which factors affect absorption and reflection of thermal energy? check all that apply. THIS IS A TEST​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!