Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Answer:
80 m/s
Explanation:
Given:
a = -5 m/s²
v = 0 m/s
Δx = 640 m
Find: v₀
v² = v₀² + 2a(x − x₀)
(0 m/s)² = v₀² + 2(-5 m/s²) (640 m)
v₀ = 80 m/s
Answer:
h f = Wf + K
where the total energy available is h f, Wf is the work function or the work needed to remove the electron and K is the kinetic energy of the removed electron
If K = zero then hf = Wf
Wf = h f = h c / λ or
λ = h c / Wf = 6.63E-34 * 3.0E8 / (3.7 * 1.6E-19)
λ = 6.63 * 3 / (3.7 * 1.6) E-7 = 3.36E-7
This would be 3360 angstroms or 336 millimicrons
Visible light = 400-700 millimicrons
The answer for this question should be TRUE
The masses amount of a proton and neutron are 1.0087 and 1.0073 amu respectively.
<h3>What is a Proton?</h3>
This is defined as sub atomic particle which is positively charged and is present in the nucleus while the neutron is also a particle present in the nucleus but has a neutral charge.
Electrons on the other hand are found outside the nucleus and are negatively charged. It is the sub atomic particle which is actively involved in a chemical reaction.
The masses of neutron and proton are 1.0087 and 1.0073 amu respectively and was discovered by scientists thereby making it the most appropriate choice.
Read more about Proton and Neutron here brainly.com/question/237857
#SPJ1