Answer:
6.5e-4 m
Explanation:
We need to solve this question using law of conservation of energy
Energy at the bottom of the incline= energy at the point where the block will stop
Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=
Energy at the point where the block will stop consists of only gravitational potential energy=
Hence from Energy at the bottom of the incline= energy at the point where the block will stop
⇒
⇒
Also 
where
is the mass of block
is acceleration due to gravity=9.8 m/s
is the difference in height between two positions
⇒
Given m=2100kg
k=22N/cm=2200N/m
x=11cm=0.11 m
∴
⇒
⇒
⇒h=0.0006467m=
<u>Answer:</u>
<em>Equivalence point and end point are terminologies in pH titrations and they are not the same.
</em>
<u>Explanation:</u>
In a <em>titration the substance</em> added slowly to a solution usually through a pippette is called titrante and the solution to which it is added is called titrand. In acid-base titrations acid is added to base or base is added to acid.the strengths of the <em>acid and base titrated</em> determines the nature of the final solution.
At equivalence point the <em>number of moles of the acid</em> will be equal to the number of moles of the base as given in the equation. The nature of the final solution determines the <em>pH at equivalence point. </em>
<em>A pH less than 7 will be the result if the resultant is acidic and if it is basic the pH will be greater than 7. </em>In a strong base-strong acid and weak base-weak acid titration the pH at the equivalence point will be 7 indicating <em>neutral nature of the solution.
</em>
<u>Answer:
</u>
Cat has 2.02 seconds to right itself.
<u>Explanation:
</u>
Initial height of cat from ground = 20 meter.
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this the velocity of cat in vertical direction = 0 m/s, acceleration = acceleration due to gravity = 9.8
, we need to calculate time when s = 20 meter.
Substituting
So, cat has 2.02 seconds to right itself.
Answer:
The electric potential will be "259.695 volt".
Explanation:
In the given question, the figure is not provided. Below is the attached figure given.
Given:





Now,
At point P, the electric potential will be:
⇒ 
By putting values, we get
⇒ ![=9\times 10^9 [\frac{6.39\times 10^{-9}}{0.40} +\frac{3.22\times 10^{-9}}{0.25} ]](https://tex.z-dn.net/?f=%3D9%5Ctimes%2010%5E9%20%5B%5Cfrac%7B6.39%5Ctimes%2010%5E%7B-9%7D%7D%7B0.40%7D%20%2B%5Cfrac%7B3.22%5Ctimes%2010%5E%7B-9%7D%7D%7B0.25%7D%20%5D)
⇒ 
Sediments are pieces of rock that come from other rocks that were eroded or broken by wind, water or other mechanical forces. Debris are pieces of other materials that were also swept away.
When these sediments and debris settle, they create layers. These layers are called beds. In time, several layers of other sediments and debris form on top of each other which press down onto the previous layers. Because of the pressure from the weight of the newer layers, the sediments and debris are pressed together and go through cementation. These then produce sedimentary rocks.
Metamorphic rocks form when rocks undergo heat and pressure. The heat comes from the friction resulting from the pressure. The heat can also come from radioactive decay. The rocks then slowly bake into new rocks called metamorphic rocks.
Igneous rocks form when magma and lava cool down. Magma is molten fluid found beneath the surface of the Earth. Lava is magma that has reached the surface of the Earth. When they cool down, they crystallize which make igneous rocks.
The difference between intrusive and extrusive igneous rocks is that one is made beneath the Earth and the other is made on the surface of the Earth. When magma cools, it takes a long time and the product of this cooling are intrusive igneous rocks. On the other hand, extrusive igneous rock is the result of lava cooling, which does not take as long to cool down because it occurs on the surface of the Earth.
Examples of the following types of rocks:
Sedimentary: limestone, sandstone, siltstone
Metamorphic: Marble, gneiss, slate
Igneous: Gabbro (intrusive), granite (Intrusive), obsidian (extrusive)