Answer:
The statement that is not true is: 'Temperature does not affect the reaction rate'.
Explanation:
a) Temperature can change a reaction rate. <u> This is true</u>
Increasing the temperature increases the reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
For example, the time taken to melt a metal will be much higher at a lower temperature but it will decrease as soon as we increase the temperature
b) The amount of reactants can increase the reaction rate.<u> This is true</u>
A higher concentration of reactants leads to more effective collisions per unit time, which leads to an increased reaction rate.
c) Temperature can decrease the reaction rate. <u>This is true </u>
Decreasing the temperature decreases the reaction rates because of the decrease in the number of high energy collisions. It will result in a slower reaction.
d) Temperature does not affect the reaction rate. <u>This is not true. </u>
The reaction rate is temperature dependent. The reaction rate increases with higher temperature and decreases with lower temperature.
Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
Hi!
Answer:
The change in temperature.
Explanation:
Snow forms at 0 °C, when water vapor converts directly into solid ice crystals. Sleet forms when raindrops fall through a layer of air colder than 0 °C. This means that from the time it was snowing to the time it started sleeting the air has gotten warmer but one layer of air stayed cold, hence the formation of sleet. Freezing rain is rain that freezes when it hits a cold surface. This means that from the time it was sleeting to the time there was freezing rain the air had completely warmed and is now above 0 °C but the ground and all other surfaces are still cold.
I hope this helps, as this happens all the time where I live! :)
The molar mass of a, b and c at STP is calculated as below
At STP T is always= 273 Kelvin and ,P= 1.0 atm
by use of ideal gas equation that is PV =nRT
n(number of moles) = mass/molar mass therefore replace n in the ideal gas equation
that is Pv = (mass/molar mass)RT
multiply both side by molar mass and then divide by Pv to make molar mass the subject of the formula
that is molar mass = (mass x RT)/ PV
density is always = mass/volume
therefore by replacing mass/volume in the equation by density the equation
molar mass=( density xRT)/P where R = 0.082 L.atm/mol.K
the molar mass for a
= (1.25 g/l x0.082 L.atm/mol.k x273k)/1.0atm = 28g/mol
the molar mass of b
=(2.86g/l x0.082L.atm/mol.k x273 k) /1.0 atm = 64 g/mol
the molar mass of c
=0.714g/l x0.082 L.atm/mol.K x273 K) 1.0atm= 16 g/mol
therefore the
gas a is nitrogen N2 since 14 x2= 28 g/mol
gas b =SO2 since 32 +(16x2)= 64g/mol
gas c = methaneCH4 since 12+(1x4) = 16 g/mol
Answer:
12 moles of H₂O are formed in this combustion.
Explanation:
First of all, think the reaction:
2CH₃OH (l) + 3O₂ (g) → 2CO₂ (g) + 4H₂O (g)
Ratio in the reactants is 2:3, so 2 mol of methanol need 3 mol of oxygen to react. Then 8 mol of CH₃OH, will need (8.3)/2 = 12 moles of O₂
We have 9 moles of O₂, so this is the limiting reactant.
3 mol of oxygen produce 4 mol of water
Then, 9 mol of oxygen will produce ( 9 .4)/3 = 12 moles