Answer:
Explanation:
91.4
grams
Explanation:
C
=
m
o
l
v
o
l
u
m
e
2.45
M
=
m
o
l
0.5
L
2.45
M
⋅
0.5
L
=
m
o
l
m
o
l
=
1.225
Convert no. of moles to grams using the atomic mass of K + Cl
1.225
m
o
l
⋅
(
39.1
+
35.5
)
g
m
o
l
1.225
m
o
l
⋅
74.6
g
m
o
l
=
1.225
⋅
74.6
g
=
91.4
g
I think C. Mutualism.
Hope this helps :)
Answer:
the chocolate
Explanation:
You are changing the amount of chocolate
Answer:
option A = C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
Explanation:
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
This reaction correctly hold the law of conservation of mass.
Other options:
C + 4H₂ → CH₄
12 g + 8g = 16 g
20 g = 16 g
This reaction do not hold the law of conservation of mass.
3H₂O → 3H₂ + 3O₂
54 g = 6 g + 96 g
54 g = 102 g
This reaction do not hold the law of conservation of mass.
2Na + Cl → NaCl
46 g + 35.5 g = 58.5 g
81.5 g = 58.5 g
This reaction do not hold the law of conservation of mass.
Trisulfur nonaiodide
Step-by-step explanation:
The name for a binary molecular compound has the form
Multiplying prefix+name of first element multiplying prefix+stem of second element element+ide (two words)
The multiplying prefixes for three and nine are tri and nona, respectively.
The stem of iodine is iod.
Put them together, and the name of S₃I₉ is
trisulfur nonaiodide.