Answer:
A. there is an isotope of lanthanum with an atomic mass of 138.9
Explanation:
By knowing the different atomic masses of both Lanthanum atoms, we can not tell anything about their occurence in nature. Therefore, all the last three options are incorrect. Because, the atomic mass does not tell anything about the availability or natural abundance of an element.
Now, the isotopes of an element are those elements, which have same number of electrons and protons as the original element, but different number of neutrons. Therefore, they have same atomic number but, different atomic weight or atomic masses.
Hence, by looking at an elements having same atomic number, but different atomic masses, we can identify them as isotopes.
Thus, the correct option is:
<u>A. there is an isotope of lanthanum with an atomic mass of 138.9.</u>
Answer:
Hornfels most commonly form in the aureole of granitic intrusions in the upper or middle crust. Hornfels formed from contact metamorphism by volcanic activity very close to the surface can produce unusual and distinctive minerals.
Answer:
1.64g
Explanation:
The reaction scheme is given as;
2-bromocyclohexanol --> 1,2-epoxycyclohexane + HBr
From the reaction above,
1 mol of 2-bromocyclohexanol produces 1 mol of 1,2-epoxycyclohexane
3.0 grams of trans-2-bromocyclohexanol.
Molar mass = 179.05 g/mol
Number of moles = mass / molar mass = 3 / 179.05 = 0.016755 mol
This means 0.016755 mol of 1,2-epoxycyclohexane would be produced.
Molar mass = 98.143 g/mol
Theoretical yield = Number of moles * Molar mass
Theoretical yield = 0.016755 * 98.143 ≈ 1.64g
Bit.my/3a8Nt8n here’s the link for the answer