The figure mentioned on the question is in the attachment.
Answer: a)
= - 38.35N
b)
= 30.5 N
c)
= 27.45 N
d) a = - 13.16 m/s²
Explanation: A block on an inclined plane has 3 forces acting on it:
- Force due to gravity
= m.g; - Normal Force due to the plane;
- Force of Friction
= µ.N;
Since the plane is inclined, Normal Force is equal the y-component of the force due to gravity and Force of friction and the x-component of the force due to gravity are opposite forces.
The second attachment ilustrate the forces acting on the block.
Calculating:
A) The magnitude of the x-component of Force due to gravity:
According to the second image:
= P.sinθ
= 5.9.8.sin(36.8)
= - 38.35 N
B)
=
= m.g.cosθ
= 5.9.8.cos(36.8)
= 30.5 N
C)
= 0.9.30.5
= 27.45 N
D) For the acceleration, use Newton's Law:
= m . a
If there is movement, it is only on x-axis, so the net force is:
-
= m.a
- 38.35 - 27.45 = 5a
a = - 13.16 m/s²
The value of acceleration shows there is <u>no</u> <u>movement</u> on the x-axis due to the friction.
These questions are actually pretty easy, if you really are struggling, you can do a little research
Solar Energy is the answer to the question tell me if i`m wrong
At the point where the ball stops it has speed of 0 m/s. When it continues to fall in every meter it gets 9.8 m/s so you just put this :
9.8 m/s2 x 2.5 m = 24.5 m/s
Answer:
298,220 N
Explanation:
Let the force on car three is T_23-T_34
Since net force= ma
from newton's second law we have
T_23-T_34 = ma
therefore,
T_23-T_34 = 37000×0.62
T_23= 22940+T_34
now, we need to calculate
T_34
Notice that T_34 is accelerating all 12 cars behind 3rd car by at a rate of 0.62 m/s^2
F= ma
So, F= 12×37000×0.62= 22940×12= 275280 N
T_23 =22940+T_34= 22940+ 275280= 298,220 N
therefore, the tension in the coupling between the second and third cars
= 298,220 N