Answer:
L= 0.059 mH
Explanation:
Given that
R = 855 Ω and C = 6.25 μF
V= 84 V
Frequency
ω = 51900 1/s
We know that

L=Inductance
C=Capacitance
ω =angular Frequency
ω² L C =1
(51900)² x L x 6.25 x 10⁻⁶ = 1
L= 5.99 x 10⁻⁵ H
L= 0.059 mH
True.
Depending how accurate the graph is plotted
The circumference of a circle is (2π · the circle's radius).
The length of a semi-circle is (1π · the circle's radius) =
(π · 14.8) = 46.5 (rounded)
(The unit is the same as whatever the unit of the 14.8 is.)
If the pulling is done parallel to the floor with constant velocity, then the box is in equilibrium. In particular, the weight and normal force cancel, so that
<em>n</em> = 38 N
The friction force is proportional to the normal force by a factor of 0.27, so that
<em>f</em> = 0.27 (38 N) ≈ 10.3 N
and so the answer is D.
Explanation:
VELOCITY: BECAUSE ITS A VECTOR QUANTITY