Answer:
<h2>
Interphase : divided into three phases, i) G1 phase, ii) S phase and iii) G2 phase.</h2><h2>Mitotic phase: i) prophase, ii) metaphase, iii) anaphase and v) telophase.</h2>
Explanation:
interphase : divided into three phases, i) G1 phase, ii) S phase and iii) G2 phase.
G1 phase: cell decide whether to divide or not and prepare itself for replication of DNA and arrange replication machinery. otherwise it goes to G 0 phase.
S phase: DNA replication occurs in this phase.
G2 phase: cell duplicates all their contents and prepares for mitotic phase.
Mitotic phase:
i) prophase- chromosome condensation occurs,
ii) metaphase - chromosome arranges in meta-plate and spindle binds to each chromosomes at centromere.
iii) anaphase- chromosome separates from sister chromatids.
iv) telophase- chromosome moves to each ends and formation of nuclear membrane begins.
cytokinesis: there is division of cytoplasm and forming two daughter cells.
The electrons in the outermost shell of the covalent compounds are shared by nearby atoms. As there are no free electrons for conducting electricity, the covalent compounds are perfect insulators at absolute zero. As the temperature increases, some electrons move from valence band to conduction band. This gives rise to conductivity. But as the numbers of charge carriers are very low, covalent compounds are poor conductors. On the other hand metals are good conductors cause of their bonding. Metallic bonding consists of a sea of electrons rather than discreet bonds. The free electrons are able to move freely. Since electricity and heat need electrons to move, the bonding promotes conductivity.
if I'm being honest I think it would be uhm C