Answer: (D)
Explanation: just took the quiz and got a 100!
Answer:
a) 2.02 years
b) 8.1 x 10⁻⁸.
Explanation:
Time period of a rotating body T² is proportional to radius of orbit R³ So
T₁² / T₂² = R₁³ /R₂³ ( T₁ and R₁ is time period and radius of orbit of the earth .)
1² / T₂² =( 1/1.6)³
T₂ = 2.02 years.
Kinetic energy of an orbiting body = 1/2 m v₀² ( v₀ is orbital speed)
= 1/2 m x 2 g R = m x G m/R² X R= m² x G /R
Kinetic energy of asteroid K₁ / kinetic energy of earth K₂ =
(mass of asteroid/mass of earth)² x( radius of earth / radius of asteroid)
=( 3.6 x 10⁻⁴)² x 1/1.6 = 8.1 x 10⁻⁸ .
Answer:
The spring constant is 60,000 N
The total work done on it during the compression is 3 J
Explanation:
Given;
weight of the girl, W = 600 N
compression of the spring, x = 1 cm = 0.01 m
To determine the spring constant, we apply hook's law;
F = kx
where;
F is applied force or weight on the spring
k is the spring constant
x is the compression of the spring
k = F / x
k = 600 / 0.01
k = 60,000 N
The total work done on the spring = elastic potential energy of the spring, U;
U = ¹/₂kx²
U = ¹/₂(60000)(0.01)²
U = 3 J
Thus, the total work done on it during the compression is 3 J
Answer:
It is one of the 7 diatomics
Explanation:
Br
I
N
Cl
H
O
F
^ these are the 7 diatomic molecules. Atoms of these elements exist as a molecule consisting of two covalently bonded atoms of the same element.
Simply put, for these elements, the diatomic state of the atom is much more stable than the unbound one.