It was Niels Bohr who proposed it
Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation: , where is the final velocity, is the initial velocity, the acceleration, and is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case: , where because the sled is totally stopped, is the velocity of the sled before braking and, is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:, where is the distance traveled, is the initial velocity, the time of the process and, is the acceleration of the process.
Then for this case the relationship becomes: .
<u>Note that the acceleration is negative because is a braking process.</u>
The sun is bigger, but has less mass than the earth
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,
Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,
Replacing,
(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as
Replacing,
Now the velocity is described as,
We have all the values, then replacing,
Answer:
To determine the minimum blade length, add 1" to the workpiece thickness. One type of material, and some materials can be cut by more than one type of blade. No matter the material, there's likely a jigsaw blade designed specifically for. Armed with the right blade, follow these pointers to make your work go (and cut) .
Explanation: