According to the law of conservation of mass, the amount of BARIUM present of the reactants is the same as the amount present in the products (the precipitate).
(11.21 g BaSO4) / (233.4 g/mol BaSO4) = 0.0480 mol BaSO4 and original barium salt
(10.0 g) / (0.0480 mol) = 208.3 g/mol
So it must have been BaCl2, because the molar mass of Barium is 137 which leave 71 grams left. Since Barium is a +2 charge, it means the atom next to it must be twice. Chlorine mass is 35, which twice is 71
Fe O
2 3 is what i would put
Answer:
Explanation:
The main task here is that there are some missing gaps in the above question that needs to be filled with the appropriate answers. So, we are just going to do rewrite the answer below as we indicate the missing gaps by underlining them and making them in bold format.
SO; In the quantum-mechanical model of the hydrogen atom.
As the n level increases. the energy <u>increases</u> and thus levels are <u>closer to </u>each other. Therefore, the transition <u>3p→2s</u> would have a greater energy difference than the transition from <u>4p→3p.</u>


❤️Hello!❤️ The answer is A. Energy can change from one form to another. Hope this helps! ↪️ Autumn ↩️