1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
11

The sophomore class holds a car wash to raise money. A local merchant donates all of the supplies. A wash cost $5 per car and $6

.50 per van or truck......how do i define a variable for the number of cars and a different variable for the number of vans or trucks
Mathematics
1 answer:
Taya2010 [7]3 years ago
5 0
Use any letter "x" is the usual one but since you have 2 you can use 2 different ones.
You might be interested in
PLS HELP ME !!!!! i am terrible at maths.
AlekseyPX

Answer:

b

Step-by-step explanation:

4 0
3 years ago
Find the five arithmetic means between -18 and 36
Andreas93 [3]
Yeah it really be like that sometimes, you gotta try girl
5 0
3 years ago
Please bros, I need this.
Lady_Fox [76]
<span>The answer is It represents a nonlinear function because its points are not on a straight line.</span>
7 0
3 years ago
Read 2 more answers
Activity 4: Performance Task
Nookie1986 [14]

An arithmetic progression is simply a progression with a common difference among consecutive terms.

  • <em>The sum of multiplies of 6 between 8 and 70 is 390</em>
  • <em>The sum of multiplies of 5 between 12 and 92 is 840</em>
  • <em>The sum of multiplies of 3 between 1 and 50 is 408</em>
  • <em>The sum of multiplies of 11 between 10 and 122 is 726</em>
  • <em>The sum of multiplies of 9 between 25 and 100 is 567</em>
  • <em>The sum of the first 20 terms is 630</em>
  • <em>The sum of the first 15 terms is 480</em>
  • <em>The sum of the first 32 terms is 3136</em>
  • <em>The sum of the first 27 terms is -486</em>
  • <em>The sum of the first 51 terms is 2193</em>

<em />

<u>(a) Sum of multiples of 6, between 8 and 70</u>

There are 10 multiples of 6 between 8 and 70, and the first of them is 12.

This means that:

\mathbf{a = 12}

\mathbf{n = 10}

\mathbf{d = 6}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{10} = \frac{10}2(2*12 + (10 - 1)6)}

\mathbf{S_{10} = 390}

<u>(b) Multiples of 5 between 12 and 92</u>

There are 16 multiples of 5 between 12 and 92, and the first of them is 15.

This means that:

\mathbf{a = 15}

\mathbf{n = 16}

\mathbf{d = 5}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*15 + (16 - 1)5)}

\mathbf{S_{16} = 840}

<u>(c) Multiples of 3 between 1 and 50</u>

There are 16 multiples of 3 between 1 and 50, and the first of them is 3.

This means that:

\mathbf{a = 3}

\mathbf{n = 16}

\mathbf{d = 3}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*3 + (16 - 1)3)}

\mathbf{S_{16} = 408}

<u>(d) Multiples of 11 between 10 and 122</u>

There are 11 multiples of 11 between 10 and 122, and the first of them is 11.

This means that:

\mathbf{a = 11}

\mathbf{n = 11}

\mathbf{d = 11}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{11}2(2*11 + (11 - 1)11)}

\mathbf{S_{11} = 726}

<u />

<u>(e) Multiples of 9 between 25 and 100</u>

There are 9 multiples of 9 between 25 and 100, and the first of them is 27.

This means that:

\mathbf{a = 27}

\mathbf{n = 9}

\mathbf{d = 9}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{9} = \frac{9}2(2*27 + (9 - 1)9)}

\mathbf{S_{9} = 567}

<u>(f) Sum of first 20 terms</u>

The given parameters are:

\mathbf{a = 3}

\mathbf{d = 3}

\mathbf{n = 20}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{20} = \frac{20}2(2*3 + (20 - 1)3)}

\mathbf{S_{20} = 630}

<u>(f) Sum of first 15 terms</u>

The given parameters are:

\mathbf{a = 4}

\mathbf{d = 4}

\mathbf{n = 15}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{15} = \frac{15}2(2*4 + (15 - 1)4)}

\mathbf{S_{15} = 480}

<u>(g) Sum of first 32 terms</u>

The given parameters are:

\mathbf{a = 5}

\mathbf{d = 6}

\mathbf{n = 32}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{32} = \frac{32}2(2*5 + (32 - 1)6)}

\mathbf{S_{32} = 3136}

<u>(g) Sum of first 27 terms</u>

The given parameters are:

\mathbf{a = 8}

\mathbf{d = -2}

\mathbf{n = 27}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{27} = \frac{27}2(2*8 + (27 - 1)*-2)}

\mathbf{S_{27} = -486}

<u>(h) Sum of first 51 terms</u>

The given parameters are:

\mathbf{a = -7}

\mathbf{d = 2}

\mathbf{n = 51}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{51} = \frac{51}2(2*-7 + (51 - 1)*2)}

\mathbf{S_{51} = 2193}

Read more about arithmetic progressions at:

brainly.com/question/13989292

4 0
2 years ago
Read 2 more answers
Please help I really need an answer anything would help! :)
Romashka-Z-Leto [24]

Answer:     lise will play 2 times deanna will play 4 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

 

Step-by-step explanation:

6 0
4 years ago
Other questions:
  • Let f(x) = 4x - 7 and g(x) = 2x - 3. Find (fog)(4).
    7·2 answers
  • Which function has exactly three distinct real zeros? A. h(x) = (x − 9)2(x − 4)2 B. h(x) = x(x + 7)2 C. h(x) = (x − 3)(x + 1)(x
    5·1 answer
  • If 7-6x= 2x+13 then what is 22x
    11·1 answer
  • Multiply (x-4)(x^2)-5x+3
    15·1 answer
  • Use Euler's method with each of the following step sizes to estimate the value of y(0.4), where y is the solution of the initial
    10·1 answer
  • A store allows customers to fill their own bags of candy.Glen decides he only wants caramels and candy corn.caramels sell for $0
    10·1 answer
  • 1.6y + y - 4/15 y + 1 1/6y = 2 1/3 Please help!
    9·2 answers
  • Marta's line of fit __ a line of best fit because her line __
    11·2 answers
  • What type of angles are these?
    15·2 answers
  • Can someone please help me
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!