It will be unstable system because it will not be able to recover from the disturbance
Explanation:
Given Data
Total mass=93.5 kg
Rock mass=0.310 kg
Initially wagon speed=0.540 m/s
rock speed=16.5 m/s
To Find
The speed of the wagon
Solution
As the wagon rolls, momentum is given as
P=mv
where
m is mass
v is speed
put the values
P=93.5kg × 0.540 m/s
P =50.49 kg×m/s
Now we have to find the momentum of rock
momentum of rock = mv
momentum of rock = (0.310kg)×(16.5 m/s)
momentum of rock =5.115 kg×m/s
From the conservation of momentum we can find the wagons momentum So
wagon momentum=50.49 -5.115 = 45.375 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
Speed of wagon=45.375/(93.5-0.310)
Speed of wagon= 0.487 m/s
Throwing rock backward,
momentum of wagon = 50.49+5.115 = 55.605 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
speed of wagon = 55.605 kg×m/s/(93.5kg-0.310kg)
speed of wagon= 0.5967 m/s
Answer:
The bronchioles function is to deliver air to tiny sacs called alveoli where oxygen and carbon dioxide are exchanged.
Explanation:
Bronchioles are air passages inside the lungs that branch off like tree limbs from the bronchi—the two main air passages into which air flows from the trachea (windpipe) after being inhaled through the nose or mouth. The bronchioles deliver air to tiny sacs called alveoli where oxygen and carbon dioxide are exchanged.
Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J