Answer:
80.386 degrees
Explanation:
We use the cosine equation here (which is the adjacent side of the unknown angle divided by the hypotenuse
The adjacent side = 699ft
The hypotenuse = 1034ft
using cos∅ = Adjacent/hypotenuse
where ∅ is the unknown angle
cos ∅ = 699/1034 = 0.167
∅ = arccos 0.167 = 80.368°
As easy as one can imagine
Answer:
Key components of games are goals, rules, challenge, and interaction.
Explanation:
Hope I helped.
Answer:
Follows are the solution to this question:
Explanation:
Please find the correct question in the attachment file.
Let:

Calculating the value of 
![\to \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{K}\\R_i&R_j&R_k\\S_i&S_j&S_k\end{array}\right | = \hat{i}[R_j S_k-S_jR_k]-\hat{j}[R_i S_k-S_iR_k]+\hat{k}[R_i S_j-S_iR_j]](https://tex.z-dn.net/?f=%5Cto%20%5Cleft%20%7C%20%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7BK%7D%5C%5CR_i%26R_j%26R_k%5C%5CS_i%26S_j%26S_k%5Cend%7Barray%7D%5Cright%20%7C%20%3D%20%5Chat%7Bi%7D%5BR_j%20S_k-S_jR_k%5D-%5Chat%7Bj%7D%5BR_i%20S_k-S_iR_k%5D%2B%5Chat%7Bk%7D%5BR_i%20S_j-S_iR_j%5D)
Calculating the value of 
![\to (R_i\hat{i}+R_j\hat{j}+R_k\hat{k}) \cdot ( \hat{i}[R_j S_k-S_jR_k]-\hat{j}[R_i S_k-S_iR_k]+\hat{k}[R_i S_j-S_iR_j])](https://tex.z-dn.net/?f=%5Cto%20%28R_i%5Chat%7Bi%7D%2BR_j%5Chat%7Bj%7D%2BR_k%5Chat%7Bk%7D%29%20%5Ccdot%20%28%20%5Chat%7Bi%7D%5BR_j%20S_k-S_jR_k%5D-%5Chat%7Bj%7D%5BR_i%20S_k-S_iR_k%5D%2B%5Chat%7Bk%7D%5BR_i%20S_j-S_iR_j%5D%29)
by solving this value it is equal to 0.
Answer:
2.88×10⁻⁹ s
2.40×10¹⁵ m/s²
Explanation:
Given:
v₀ = 12300 m/s
v = 6.92×10⁶ m/s
Δx = 0.997 cm = 0.00997 m
Part 1) Find: t
Δx = ½ (v + v₀)t
0.00997 m = ½ (6.92×10⁶ m/s + 12300 m/s) t
t = 2.88×10⁻⁹ s
Part 2) Find: a
(6.92×10⁶ m/s)² = (12300 m/s)² + 2a (0.00997 m)
a = 2.40×10¹⁵ m/s²