Answer: a. 17.7 KJ/Mol
b. T=210K
Explanation:
Arsine, ash3 is a highly toxic compound used in the electronics industry for the production of semiconductors. its vapor pressure is 35 torr at – 111.95°c and 253 torr at – 83.6°c. using these data calculate.
the question isnt completely originally, but we could look at the likely derivation from the questions
(a) the standard enthalpy of vaporization
using the clausius clapeyron equation
In (PT1vap / PT2vap) = delta H (vap) / R ( (1/T1) - (1/T2) )
In (35Torr/253Torr) = delta H (vap) / 8.3145 ( (1/189.55) - (1/161.2) )
Therefore, Delta H (vap) = 17.7 KJ/Mol
b. Also the boiling point
What is the normal boiling point of arsine?
At the boiling point Pvap = atmospheric pressure = 1 atm=760 torr
substitution into the equation as stated in question 1
ln(760/253)=17700/8.314(1/189.55-1/T)
T=210K
Answer: <u>Option A: </u>The gas and food are examples of energy.
Explanation:
Work and energy are inter-related. Energy is required to do the work. An equal amount of energy is converted into work. Work and energy have same units. The SI unit is Joule.
The gas and food are sources of energy. They act as fuel. This energy is utilized to perform work. The gas is used to run the car. The food is metabolized inside the body which is a source of energy and utilized to perform every day work.
Hence, The gas and food are examples of energy.
Answer:
True
Explanation:
an object in motion stays in motion unless acted upon by another force
Answer:
the light will reflect parallel to the principal axis
To solve this problem it is necessary to apply the concepts related to Faraday's law and the induced emf.
By definition the induced electromotive force is defined as


Where,
Electric field
B = Magnetic Field
A = Area
At the theory the magnetic field is defined as,

Where,
N = Number of loops
I = current
Permeability constant
We know also that the cross sectional area, is the area from a circle, and the length is equal to the perimeter then
A = \pi r^2
l = 2\pi r
Replacing at the previous equation we have that

Where,
R = Radius of the solenoid
r = The distance from the axis
Re-arrange to find the current in function of time,

Replacing our values we have

