Acceleration=9.81m/s^2
initial velocity=0m/s
time=.28s
We have to find final velocity.
The equation we use is
Final velocity=initial velocity+acceleration x time
Vf=0m/s+(9.81m/s^2)(.28s)
Vf=2.7468m/s
We would round this to:
Vf (final velocity)=2.7m/s
Answer:
38.3 m/s
Explanation:
To find vertical component of initial velocity, you'd have to use sine ratio:

is vertical component of initial velocity and
is initial velocity given which is 50 m/s.
A stone is projected at an angle of 50 degrees so
= 50°. Substitute in the formula:

Therefore, the vertical component of initial velocity is approximately 38.3 m/s
(The picture is also attached for visual reference!)
Answer:

Explanation:
We are given that
Current in wire=40 A
Magnetic field=
T( vertically downward)
We have to find the resultant magnitude of the magnetic field 29 cm above the wire and 29 cm below the wire.
According to Bio-Savart law, the magnetic field exerted by the wire at distance R is given by

We have R=29 cm=
1 m=100 cm
Substitute the values in the given formula

The resultant magnetic field is given by

Substitute the values then we get


The resultant magnitude of magnetic field is same above and below the wire as it is at same distance.
The resultant magnitude of the magnetic field 29 cm below the wire=
Hence, the resultant magnitude of the magnetic field 29 cm above the wire=
Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .