Answer:
Inductance as calculated is 13.12 mH
Solution:
As per the question:
Length of the coil, l = 12 cm = 0.12 m
Diameter, d = 1.7 cm = 0.017 m
No. of turns, N = 235
Now,
Area of cross-section of the wire, A = 
We know that the inductance of the coil is given by the formula:

Answer:
C. Technician B
Explanation:
Excessive Galvanic activity:
To check for excessive galvanic activity, voltmeter is used to check the coolant. If the voltmeter is giving a reading greater than 0.5 V, there is excessive galvanic activity. Excessive galvanic activity is solved by flushing the coolant fluid from engine and refiling it.
Electrolysis problem:
When the system is not properly ground, the cooling system accepts stray current and the coolant becomes an electrolyte which might eat up the radiator. To test for excessive electrolysis, start the engine and turn on all electrical accessories, if the reading is more than 0.5 V, there is electrolysis problem. Ground wires and connections should be checked at this point to stop stray current.
In our case, the first reading is 0.2 V(engine turned off) which is normal and there is no excessive galvanic activity. This means that Technician A is not correct. The second reading is 0.8 V when the engine and all electrical accessories are turned on. This reading is greater than 0.5 V which means there is an electrolysis problem. This means that Technician B is correct and ground wires and connections should be inspected and repaired.
Answer:
B) The cosmic background radiation is expected to contain spectral lines of hydrogen and helium, and it does.
Explanation:
As it is given that the air bag deploy in time

total distance moved by the front face of the bag

Now we will use kinematics to find the acceleration




now as we know that

so we have

so the acceleration is 400g for the front surface of balloon
Answer:

Explanation:
<u>Elastic Potential Energy
</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.
Solving for Δx:

Substituting:

Calculating:

