The answer is as voltage increases current increases and therefore resistance would remain constant
Answer:
a = -1 m/s^2
Explanation:
Vi = 75 m/s
Vf = 25 m/s
t = 50 s
Plug those values into the following equation:
Vf = Vi + at
25 = 75 + 50a
---> a = -1 m/s^2
Answer:
4515.49484 N
4329.10484 N
Explanation:
r = Radius of balloon = 4.4 m
m = Mass of balloon with instruments = 19 kg
g = Acceleration due to gravity = 9.81 m/s²
Volume of balloon

The Buoyant force = Weight of the air displaced

The buoyant force acting on the balloon is 4515.49484 N
Net force on the balloon

The net force on the balloon is given by 4329.10484 N
As the balloon goes up the pressure outside reduces as the density of air decreases while the air pressure inside the balloon is high hence, the radius of the balloon tend to increase as it rises to higher altitude.
Answer:
<em>Thus, the object is accelerating to the left</em>
Explanation:
<u>The Net Force</u>
The net force is the result of adding all the forces as vectors acting on a body.

Each vector can be expressed in its rectangular components Fx and Fy, and the sum is the sum of the rectangular components separately.
Second Newton's law gives the relation between the net force and the acceleration of the body:

We can see the acceleration is a vector with the same direction as the net force.
The diagram shows two vertical forces and two horizontal forces.
The vertical forces are acting in opposite directions and with the same magnitude, thus they cancel out, leaving zero net force in the y-axis.
The horizontal forces are opposite and with different magnitudes. Since the force acting to the left (F3) has a greater magnitude than the force acting to the right (F4), there is a net force directed to the left with a magnitude of 60 N - 20 N = 40 N
Thus, the object is accelerating to the left