It’s e 2.0 x 10^-4 because it is a fraction
Mechanical energy (ME) is the sum of potential energy (PE) and kinetic energy (KE). When the toy falls, energy is converted from PE to KE, but by conservation of energy, ME (and therefore PE+KE) will remain the same.
Therefore, ME at 0.500 m is the same as ME at 0.830 m (the starting point). It's easier to calculate ME at the starting point because its just PE we need to worry about (but if we wanted to we could calculate the instantaneous PE and KE at 0.500 m too and add them to get the same answer).
At the start:
ME = PE = mgh
ME = 0.900 (9.8) (0.830)
ME = 7.32 J
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B