Explanation:
It is given that,
Initial speed of a golfer, u = 29 m/s
If it travels the maximum possible distance before landing. It means that it is projected at an angle of 45 degrees.
(a) We need to find the time spent by the ball in the air. It can be calculated by using second equation of motion.

Here,
a = -g
s = 0 (it is displacement and it is equal to 0 as the ball lands on the green).
So,

So, it will take 4.184 seconds in the air.
(b) let x is the longest hole in one that the golfer can make if the ball does not roll when it hits the green. It can be given by :

Hence, this is the required solution.
Answer:
ρ = 1469 kg/m³
Explanation:
given,
mass of statue = 0.4 Kg
density of statue = 8 x 10³ kg/m³
tension in the string = 3.2 N
density of the fluid = ?
Volume of the statue

V = 5 x 10⁻⁵ m³
W = ρ g V
W = ρ x 9.8 x 5 x 10⁻⁵
now, tension on the string will be equal to
T = mg - W
3.2 = 0.4 x 9.8 - ρ x 9.8 x 5 x 10⁻⁵
ρ x 9.8 x 5 x 10⁻⁵ = 0.72
ρ = 1469 kg/m³
Answer:
Part a)
Width of the slit is

Part b)
Ratio of intensity is given as

Explanation:
Part a)
As we know by the formula of diffraction we will have

so we have


so we will have


Part b)
As we know that the intensity in diffraction pattern is given as


so for angle 45 degree



Answer: 
Explanation:
The mean free path
of an atom is given by the following formula:
(1)
Where:

is the Universal gas constant
is the absolute standard temperature
is the diameter of the helium atom
is the Avogadro's number
absolute standard pressure
Knowing this, let's find
from (1), in order to find the radius
of the helium atom:
(2)
(3)
(4)
If the radius is half the diameter:
(5)
Then:
(6)
(7)
However, we were asked to find this radius in nanometers. Knowing
:
(8)
Finally:
This is the radius of the helium atom in nanometers.