The Moment of Inertia of the Disc is represented by
. (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- Moment of inertia of the Disk.
- Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (
):


And the resulting equation is:



The moment of inertia of the Disc is represented by
. (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
If the ground is flat, and both bullets are released at the same time from the same height, then they both hit the ground at the same time.
The horizontal motion of the one from the gun has no effect on its vertical motion.
Lighting flows around the outside of a truck, and the majority of the current flows from the cars metal cage into the ground below. It's not very safe to be in a car or truck during bad weather.
V = I · R
Voltage = (current) · (Resistance)
Voltage = (250 A) · (2.09 x 10⁴)
Voltage = 5,225,000 volts .
I may be out of line here, but I'm pretty sure
that the resistance is 2.09 x 10⁻⁴ .
Then
Voltage = 0.05225 volt (not 5 million and something)
Answer:
300J
Explanation:
Work done = Force x the distance travelled in the direction of the force
=300 x 1
=300J