Answer:
Explanation:
mass of charged particle m = 6 x 10⁻³ kg .
speed of particle v = 4 x 10³ m /s
speed of particle perpendicular to magnetic field = v sin37
= 4 x 10³ sin37
= 2.41 x 10³ m / s
Force on charged particle
= B q v , B is magnetic field , q is charge on particle and v is velocity perpendicular to B
Force = ma
= 6 x 10⁻³ x 8
= 48 x 10⁻³
Force = Bqv
48 x 10⁻³ = 5 x 10⁻³ q x 2.41 x 10³
q = 48 x 10⁻³ / (5 x 2.41)
= 3.98 x 10⁻³C.
Answer:
A
A. Energy is lost when machines don't work right.
Answer:
<h2>
187,500N/m</h2>
Explanation:
From the question, the kinectic energy of the train will be equal to the energy stored in the spring.
Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².
Equating both we will have;
1/2 mv² = 1/2ke²
mv² = ke²
m is the mass of the train
v is the velocity of then train
k is the spring constant
e is the extension caused by the spring.
Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m
Substituting this values into the formula will give;
30000*4² = k*1.6²

The value of the spring constant is 187,500N/m
Answer:
The acceleration of gravity on the Moon is only one-sixth of that on Earth. If we hit a baseball on the moon with the same effort(and at the speed and angle)that we would on earth, the ball would land 6 times as far. The ball on the moon will cover 6 times more distance than Earth.
Explanation:
Speed=distance travelled/Time required speed
Speed=d/t
Acceleration of gravity on earth=9.8 m/s^2
Acceleration of gravity on Moon=1.62 m/s^2
So the maximum height of ball will be the ration of these both gravity.