Answer:
Mass of NH₃ produced = 34 g
Explanation:
Given data:
Mass of nitrogen = 28 g
Mass of Hydrogen = 12 g
Mass of NH₃ produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 28 g/ 28 g/mol
Number of moles = 1 mol
Moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 12 g/ 2 g/mol
Number of moles = 6 mol
Now we will compare the moles of hydrogen and nitrogen with ammonia.
H₂ : NH₃
3 : 2
6 : 2/3×6 = 4 mol
N₂ : NH₃
1 : 2
Number of moles of ammonia produced by nitrogen are less thus it will act as limiting reactant.
Mass of ammonia produced:
Mass = number of moles × molar mass
Mass = 2 mol × 17 g/mol
Mass = 34 g
The items that are true of early nuclear science are "the first nuclear reactions were done in the 1880s" and "the first nucleus split was uranium-235." <span>The answers are letters A and D. It is impossible that nucleus was lost during the reaction as it will not follow the law of mass conservation.
</span>
Answer: A. The variable c
============================================
Explanation:
Q = heat transferred
m = mass
c = specific heat
= delta T = change in temperature
Answer is: the maximum concentration of Pb²⁺ is 6.8·10⁻³ M.
Chemical reaction 1: PbCl₂(s) → Pb²⁺(aq) + 2Cl⁻(aq).
Chemical reaction 2: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Ksp(PbCl₂) = 1.7·10⁻⁵.
c(NaCl) = c(Cl⁻) = 0.0500 M.
Ksp(PbCl₂) = c(Pb²⁺) · c(Cl⁻)².
c(Pb²⁺) = Ksp(PbCl₂) ÷ c(Cl⁻)².
c(Pb²⁺) = 1.7·10⁻⁵ M³ ÷ (0.0500 M)².
c(Pb²⁺) = 0.000017 M³ ÷ 0.0025 M².
c(Pb²⁺) = 0.0068 M = 6.8·10⁻³ M.