Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
7 g S * 1 mol/32.06 g S = 0.218 mol S
Moles O₂ needed = 0.218 mol S * 3 mol O₂/2 mol S = 0.3275 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.3275 mol O₂ * 32 g/mol = 10.48 g O₂
Answer:
both
Explanation:
Carbon in the air around the living thing is moving in and out of its lungs. The movement is occurring at the same time. This is one of the most important gaseous exchange important to life.
- The goats takes in oxygen gas from the surrounding and releases carbon dioxide in the process.
- But, air is actually drawn in by the goat which is a mixture of several gases.
- Air contains carbon dioxide which is a rich source of carbon
- With the carbon dioxide from respiratory processes, the goat ejects and breathes out this waste carbon matter.
- Therefore, the gaseous exchange in a goat involves the movement of carbon in and out of the air.
Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃