Friction acts on the ball and causes it to stop
We will first determine using the given if an aircraft component will fracture with a given stress level (260 MPa), maximum internal crack length (6.0 mm) and fracture toughness (40 MPa m ), given that fracture occurs for the same component using the same alloy for another stress level and internal crack length. First, it is necessary to solve for the parameter Y, using Equation 8.5, for the conditions under which fracture occurred (i.e., σ = 300 MPa and 2 a = 4.0 mm). Therefore,
Y = K(Ic)/ sqrt(π a) = 40 MPa( m ) / (300 MPa) sqrt(( π ) ((4 × 10-3 m)/2)) = 1.68
We will now solve for the product Y σ π a for the other set of conditions, so as to ascertain whether or not this value is greater than the K(Ic) for the alloy. Thus,
Y sqrt(π a) = (1.68)(260 MPa) sqrt (( π )[(6 × 10^-3 m)/ 2])
= 42.4 MPa sqrt (m) (39 ksi in. )
Therefore, fracture will occur since this value ( 42.4 MPa sqrt(m)) is greater than the K(Ic) of the material, 40 MPa sqrt(m).
To solve this problem we will apply the concepts related to the calculation of power, from the two electrical forms:


Here,
V = Voltage
I = Current
R= Resistance
P = Power
PART A)

Replacing,


Resistance of bulb is 
PART B)



The bulb will draw 1.25A current
Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.