... The top branch of the 3-branched parallel block ... the 9 and 6 in series ...
is equivalent to a single resistor of 15 ohms.
... The 3-branched parallel block boils down to (30, 10, and 15) in parallel.
That's (1/30 + 1/10 + 1/15)⁻¹ = 5 ohms.
... The 5-ohm-equivalent block and the 20-ohm resistor form a
voltage divider across the battery.
The voltage across the 5-ohm-equivalent block is (5/25 x 30v) = 6v .
... The top branch of the block is equivalent to a (9 + 6) = 15-ohmer.
With 6v across its ends, the current through that branch is (6/15) = 0.4A .
... With 0.4A flowing through it, the 9-ohm resistor is dissipating
I²R = (0.4A)² (9 ohms) = (0.16 A²) (9 ohms) = 1.44 W (choice-3)
Answer:
There is no friction between the card and the cup.
Explanation:
Answer:
a) 5.197rev/s
b) Kf/Ki =2.28
Explanation:
a) Angular momentum of the system L = Iw
ButLi=Lf
Kiwi =Ifwf
wf = (Ii/If)will = (4.65/3.4)×3.8=5.197rev/s
b)Kinetic energy KE= 0.5Iw^2
Ki = 0.5Iiwi^2
Kf=0.5Ifwf^2
Kf/Ki = Ifwf/Iiwi
Kf/Ki = (4.65/3.4))(5.197/3.8)
Kf/Ki = 1.22(1.368)^2
Kf/Ki = 2.28
Answer:
-3.396 m/s or 3.465 m/s
Explanation:
v = Speed of sound in air = 343 m/s
= Relative speed of the singer
f = Observed frequency
f' = Actual frequency
1% change can mean 
From the Doppler effect equation we have

The velocity is -3.396 m/s
when 

The velocity is 3.465 m/s
Hey there mate :)
Even if two persons are given the same work load, the speed of the work done gets different by the energy of those persons.
No one is sure that he/she can complete the work within the time. He may or may not.
Also, the physical characteristics makes the work different. If one person has so much power to work all day, the other person may not have.
Therefore, <em>even if two persons do the same amount of work , they may have different power</em><em>.</em>