Answer:
a)1396.52 N
b)1396.52 N
c)
d)
Explanation:
The force experienced by the satelite is giveb by

m_{satellite}= 445 Kg
m_{earth}= 6×10^24 Kg
radius r= 1.77Re= 1.77×6.38×10^6 m
now putting values we get

⇒F= 1396.52 N
now,



also,



Answer:
Partial Pressure of F₂ = 1.30 atm
Partial pressure of Cl₂ = 0.70 atm
Explanation:
Partial pressure for gases are given by Daltons law.
Total pressure of a gas mixture = sum of the partial pressures of individual gases
Pt = P(f₂) + P(cl₂)
Partial pressure = mole fraction × total pressure
Let the mass of each gas present be m
Number of moles of F₂ = m/38 (molar mass of fluorine = 38 g/Lol
Number of moles of Cl₂ = m/71 (molar mass of Cl₂)
Mole fraction of F₂ = (m/38)/((m/38) + (m/71)) = 0.65
Mole fraction of Cl₂ = (m/71)/((m/38) + (m/71)) = 0.35 or just 1 - 0.65 = 0.35
Partial Pressure of F₂ = 0.65 × 2 = 1.30 atm
Partial pressure of Cl₂ = 0.35 × 2 = 0.70 atm
She can first measure the mass on the scale, then measure the cm^3 by putting water in the cylinder and measuring the original water level minus the water level after you put the rock in. The take the measurement from the scale (g) and divide it by the measurement in the graduated cylinder (c^3).
Answer:
we see it is a linear relationship.
Explanation:
The magnetic flux is u solenoid is
B = μ₀ N/L I
where N is the number of loops, L the length and I the current
By applying this expression to our case we have that the current is the same in all cases and we can assume the constant length. Consequently we see that the magnitude of the magnetic field decreases with the number of loops
B = (μ₀ I / L) N
the amount between paracentesis constant, in the case of 4 loop the field is worth
B = cte 4
N B
4 4 cte
3 3 cte
2 2 cte
1 1 cte
as we see it is a linear relationship.
In addition, this effect for such a small number of turns the direction of the field that is parallel to the normal of the lines will oscillate,
Answer:
496.7 K
Explanation:
The efficiency of a Carnot engine is given by the equation:

where:
is the temperature of the hot reservoir
is the temperature of the cold reservoir
For the engine in the problem, we know that
is the efficiency
is the temperature of the cold reservoir
Solving for
, we find:
