Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement = 2m + (-3)m. Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement is 1m behind his original starting point.
Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.
Answer:
P = 5880 J
Explanation:
Given that,
The mass of the block, m = 30 kg
The block is sitting at a height of 20 m.
The block will have gravitational potential energy. The formula for gravitational potential energy is given by :

So, the required potential energy is equal to 5880 J.