They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.
Hope this helps :)
Answer:
3136 Joules
Explanation:
Applying,
P.E = mgh.............. Equation 1
Where P.E = potential energy, m = mass of the cinder block, h = height of the platform, g = acceleration due to gravity.
From the question,
Given: m = 16 kg, h = 20 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
P.E = 16(20)(9.8)
P.E = 3136 Joules
Hence the potential energy of the cinder block is 3136 Joules
That is very true, but what is the question asking you.
Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately