Answer:
It tells you 2 different things
Step-by-step explanation:
1. It could tell you that Tyler's book is much more expensive than Felix's.
2. It could tell you that they're the same price but Tyler sold more.
Step-by-step explanation:
So 4x2+9 has no linear factors with Real coefficients. It is possible to factor it with Complex coefficients.
Let
be the total amount of money paid by any given set of passengers. If there are
passengers in a car, then the driver must pay a toll of
.
Then
has first moment (equal to the mean)
![E[Y]=E[0.5X+3]=0.5E[X]+3E[1]=0.5\mu_X+3=\boxed{4.35}](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5B0.5X%2B3%5D%3D0.5E%5BX%5D%2B3E%5B1%5D%3D0.5%5Cmu_X%2B3%3D%5Cboxed%7B4.35%7D)
and second moment
![E[Y^2]=E[0.25X^2+3X+9]=0.25E[X^2]+3E[X]+9E[1]=0.25E[X^2]+3\mu_X+9](https://tex.z-dn.net/?f=E%5BY%5E2%5D%3DE%5B0.25X%5E2%2B3X%2B9%5D%3D0.25E%5BX%5E2%5D%2B3E%5BX%5D%2B9E%5B1%5D%3D0.25E%5BX%5E2%5D%2B3%5Cmu_X%2B9)
Recall that the variance is the difference between the first two moments:
![\mathrm{Var}[X]=E[X^2]-E[X]^2\implies E[X^2]={\sigma^2}_X+{\mu_X}^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2%5Cimplies%20E%5BX%5E2%5D%3D%7B%5Csigma%5E2%7D_X%2B%7B%5Cmu_X%7D%5E2)
![\implies E[Y^2]=0.25({\sigma^2}_X+{\mu_X}^2)+3\mu_X+9\approx19.22](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5E2%5D%3D0.25%28%7B%5Csigma%5E2%7D_X%2B%7B%5Cmu_X%7D%5E2%29%2B3%5Cmu_X%2B9%5Capprox19.22)
![\implies\mathrm{Var}[Y]=E[Y^2]-E[Y]^2=\boxed{0.3}](https://tex.z-dn.net/?f=%5Cimplies%5Cmathrm%7BVar%7D%5BY%5D%3DE%5BY%5E2%5D-E%5BY%5D%5E2%3D%5Cboxed%7B0.3%7D)
Try this option:
1. Common view of hyperbola equation is:

2. hyperbolas are: 2x²+4x-5y²-10y+57=0 and -x²+12x+3y²+7y+11=0.
The graph is shown in the attached image.