Triangle QST is similar to triangle PQR
We are given that measure of angle SRP is 90°
Q is the point of the hypotenuse SP
Segment QR is perpendicular to PS and T is a point outside the triangle on the left of s
We need to find which triangle is similar to triangle PQR
So,
Using Angle - Angle - Angle Criterion We can say that
m∠PQR = m∠SQR (AAA similarity)
m∠SQR=m∠SQT (AAA similarity)
Where m∠Q =90° in ΔQST and PQR
Therefore ΔQST is similar to ΔPQR
Learn more about similarity of triangles here
brainly.com/question/24184322
#SPJ4
Answer:
36
Step-by-step explanation:
(Top bottom plus bottom bottom )× height divided by 2
(4+6)*6÷2=36
Answer:
3313.64 puntos
Step-by-step explanation:
Podemos interpretar la pregunta anterior Matemáticamente como:
11 monedas de oro = 36.450 puntos
1 moneda de oro = x
Multiplicar cruzada
11 monedas de oro × x = 36.450 puntos × 1 monedas de oro
x = 36.450 puntos × 1 monedas de oro / 11
x = 3313.6363636 puntos
Aproximadamente
1 moneda de oro = 3313.64 puntos