Answer:
electrons
Explanation:
By particles im assuming you mean subatomic. The particle with the most energy in this case would be electrons.
A chemist (from Greek chēm (ía) alchemy; replacing chemist from Medieval Latin alchimista[1]) is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe the properties they study in terms of quantities, with detail on the level of molecules and their component atoms. Chemists carefully measure substance proportions, reaction rates, and other chemical properties. The word 'chemist' is also used to address Pharmacists in Commonwealth English.
It respresents the higher energy level than 627nm .
<h3>What is a emission line ? </h3>
Emission lines are the glowing hot gas emits lines of light whereas absorption line refers to the tendency of cool atmospheric gas to absorb the same line of light.Some lights produce dark band when the light passes through gas in the atmosphere . There are two line spectrum and absorption.
spectrum is an excitement of electrons from lower to higher energy levels and when it comes back it releases energy in the terms of colourful lights .
It represents the higher energy levels than 627nm because Energy is inversly proportional to wavelength .
to learn more about Emission lines click here
brainly.com/question/28184999
#SPJ9
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.