Answer:
Please find the structure attached as an image
Explanation:
Based on the characteristics ending name (-ene) of the organic compound above, it belongs to the ALKENE GROUP. Alkenes are characterized by the possession of a carbon to carbon double bond (C=C) in their structure.
- But-3-ene tells us that the organic compound has four straight carbon atoms with the C=C (double bond) located on the THIRD carbon depending on if we count from right to left or vice versa.
- 2 methyl indicates that the methyl group (-CH3) is located as an attachment on the second carbon (carbon 2).
N.B: In the structure attached below, the counting is from the left to right (→).
Answer:

Explanation:
If l = 3, the electrons are in an f subshell.
The number of orbitals with a quantum number l is 2l + 1, so there
are 2×3 + 1 = 7 f orbitals.
Each orbital can hold two electrons, so the f subshell can hold 14 electrons.

Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
Answer:
I think the answer is 729 cubic millimeters.
Correct Answer: Option C i.e <span>Solution
Reason:
Solutions are characterized by particles of size less than 1nm. Since the particle size in solutions are very small, they cannot be separated by centrifugation. On other hand, colloids have particle size ranging from 1nm to 100 nm, while suspensions have particle size > 100 nm. Hence, they can be separated by centrifugation. </span>