1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
3 years ago
11

Which statement about 6x2 + 7x – 10 is true?

Mathematics
2 answers:
s344n2d4d5 [400]3 years ago
6 0
What statement? Do you need me to just answer the problem?

:/
rosijanka [135]3 years ago
5 0

Answer with explanation:

The Given Quadratic Expression is:

 6 x^2 + 7 x -10\\\\=6 x^2 +12 x -5 x -10\\\\=6 x \times (x+2)-5 \times (x+2)\\\\=(6 x -5)(x+2)

The factors of the above expression are

1. 6 x -5

2. x +2

You might be interested in
Uhhh I am struggling with this question algebra 1
Olin [163]

Answer:

-2x^2 +16x -8

Step-by-step explanation:

Oh s-

Like terms i guess Same variable you can substract. Remember you only substract from 1 number not from all.

-2x^2 stays the same as there is no like term

9x - (-7x)

-2 - (6)

-2x^2 + 9x+ 7x -2-6

-2x^2 +16x -8

4 0
3 years ago
Please help ! I’ll mark brainliest ! Have a great day :)
Misha Larkins [42]

Answer: I'm not sure about the first question, I've never been good at equations. The second one is asking for 15x30 = 450. She will make 450 dollars for 15 hours of work.

Step-by-step explanation:

6 0
3 years ago
Compare 4 x 10^6 and 2 x 10^7.
marishachu [46]

Answer:

C. 2\times 10^7 is 5 times larger than 4\times 10^6

Step-by-step explanation:

We want to compare 4\times 10^6 and 2\times 10^7.


In order to determine how many times

2\times 10^7

is larger than

4\times 10^6,

we need to divide 2\times 10^7 by  4\times 10^6 to obtain;


\frac{2\times 10^7}{4\times 10^6} =\frac{10}{2} =5


Therefore we can see that;


2\times 10^7 is 5 times larger than 4\times 10^6


The correct answer is C.



6 0
3 years ago
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
The table shows the function representing the height in the area of the base of a rectangular prism for different values of X th
stepan [7]

Answer:

A

<em>can i have brainliest lol</em>

Step-by-step explanation:

when x = 3, the volume is 36.

4 times 9 = 36, so you multiply f(x) by g(x) to get 36

6 0
3 years ago
Other questions:
  • Can anyone help with these? I appreciate and I will award 5 stars and brainliest
    14·1 answer
  • How do I find the hypotenuse of a right angle on a graph
    11·2 answers
  • Carmine bought 5 ice cream sundaes for his friends. If each sundae costs $4.95, how much did he spend? Justify your answer by us
    13·2 answers
  • MATH I GAVE ALL MY POINTS FOR THIS
    6·2 answers
  • The graph of y=f(x) is shown below. Which point could be used to find f(-2)
    12·1 answer
  • If f(x)= 2x^5-3x^3+2x^2+1, then f(1)=?<br> A. -1<br> B. 0<br> C. 1<br> D. 2<br> E. 4
    14·2 answers
  • Plz halp wil giv brainlyes
    8·1 answer
  • When Dede woke up in the morning the temperature was 62 degrees outside. When Dede went outside for recess at school the tempera
    9·2 answers
  • Carl is making a garden that is twice as long as it is wide. he wants to cover 271
    9·1 answer
  • 2w+w^3-1/2w^2 for w=2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!