Answer:
A) object moves 20 N [West] or -20 N [East]
B) object moves 6 N [South] or -6 N [North]
C) object moves 90 N [West] or -90 N [East]
D) object does not move and is at rest*
*Rest means 0
Why:
A)both forces from north and south that are pushing against the object neutralize each other. Assume that north is positive and south is negative: 20 [N] + (-20) [S] = 0
On West and east, you can see that west has a greater force. Assume that west is negative and east is positive: 50 [E] + (-70) [W] = -20 [E]
Answer:
The distance is 55.636 billion miles, or 528.2 AU.
Explanation:
Since the distance from the Sun to Neptune is 2.7818 billion miles, the distance from the Sun to Planet Nine would be 20 times that, which is:

or 55.636 billion miles.
Since 1 astronomical unit (AU) is 93 million miles, that distance is also:

Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Answer:
306 m/s
Explanation:
Law of conservation of momentum
m1v1 + m2v2 = (m1+m2)vf
m1 is the bullet's mass so it is 0.1 kg
v1 is what we're trying to solve
m2 is the target's mass so it is 5.0 kg
v2 is the targets velocity, and since it was stationary, its velocity is zero
vf is the velocity after the target is struck by the bullet, so it is 6.0 m/s
plugging in, we get
(0.1 kg)(v1) + (5.0 kg)(0 m/s) = (0.1 kg + 5.0 kg)(6.0 m/s)
(0.1)(v1) + 0 = 30.6
(0.1)(v1) = 30.6
v1 = 306 m/s