Answer:
i done know sorry for not answering ur question
There is no movement in line C and the greatest velocity occurs at line D. The answers are:
1. 0.5 m/s
2. 0.25 m/s
3. 14m and -2m
4. -1 m/s
<h3>
What is Position - time Graph ?</h3>
Position time graph is the graph of distance or displacement against time. The slope of the graph is velocity.
The given positions of four objects as a function of time are shown
on the graph to the right.
1.) The velocity of object A will be the slope m of the line A.
Slope m = Δx / Δt
m = (4 - 0) / (8 - 0)
m = 4 / 8
m = 0.5 m/s
Velocity at A = 0.5 m/s
2.) The average velocity of object B will be the slope m of the line B.
Slope m = Δx / Δt
m = (6 - 4) / (8 - 0)
m = 2 / 8
m = 0.25 m/s
The average velocity of object B is 0.25s
3.) The object moved a total distance during the first eight seconds will be 4m for A, 2m for B, and 8m for D
Total distance = 4 + 2 + 8 = 14m
It’s net displacement during the same time will be 2. That is,
Displacement = 8 - 6 = -2m
4.) The greatest speed occurred at line D. The velocity of the object moving at the greatest speed will be the slope of the line D
V = -Δx / Δt
V = -8/8
V = -1 m/s
Therefore, there is no movement in line C and the greatest velocity occurs at line D.
Learn more about velocity time graph here :brainly.com/question/769606
#SPJ1
Total force = Frope - mg = 309-300
total force = ma
9 = 30a
<span>It is measured in calories </span>
Answer:
<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>
<em></em>
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.