1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
13

Baby Susie's pediatrician notices that one of her eyes rotates outward and that she does not appear to be using it for vision. W

hat is her condition and what does the pediatrician recommend?
Physics
1 answer:
olga_2 [115]3 years ago
6 0

Answer:

Susie has strabismus.

Explanation:

Strabismus is a medical condition in which the patient can not keep his/her eyes aligned under the normal conditions. In strabismus one or both of eyes rolls into up, down, in or out direction. Physicians usually recommend the exercises for eyes or placing a patch on the unaffected eye or they also do surgery where it's required like in severe cases.  

You might be interested in
A small box of mass m1 is sitting on a board of mass m2 and length L. The board rests on a frictionless horizontal surface. The
Nadusha1986 [10]

Answer:

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}

Explanation:

The Newton’s second law states that the net force on an object is the product of mass of the object and final acceleration of the object. The expression of newton’s second law is,

\sum {F = ma}

Here, is the sum of all the forces on the object, mm is mass of the object, and aa is the acceleration of the object.

The expression for static friction over a horizontal surface is,

F_{\rm{f}}} \leq {\mu _{\rm{s}}}mg

Here, {\mu _{\rm{s}}} is the coefficient of static friction, mm is mass of the object, and g is the acceleration due to gravity.

Use the expression of static friction and solve for maximum static friction for box of mass {m_1}

Substitute  for in the expression of maximum static friction {F_{\rm{f}}} = {\mu _{\rm{s}}}mg

{F_{\rm{f}}} = {\mu _{\rm{s}}}{m_1}g

Use the Newton’s second law for small box and solve for minimum acceleration aa to pull the box out.

Substitute  for , [/tex]{m_1}[/tex] for in the equation .

{F_{\rm{f}}} = {m_1}a

Substitute {\mu _{\rm{s}}}{m_1}g for {F_{\rm{f}}} in the equation {F_{\rm{f}}} = {m_1}a

{\mu _{\rm{s}}}{m_1}g = {m_1}a

Rearrange for a.

a = {\mu _{\rm{s}}}g

The minimum acceleration of the system of two masses at which box starts sliding can be calculated by equating the pseudo force on the mass with the maximum static friction force.

The pseudo force acts on in the direction opposite to the motion of the board and the static friction force on this mass acts in the direction opposite to the pseudo force. If these two forces are cancelled each other (balanced), then the box starts sliding.

Use the Newton’s second law for the system of box and the board.

Substitute for for in the equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right)a

Substitute for in the above equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

There is no friction between the board and the surface. So, the force required to accelerate the system with the minimum acceleration to slide the box over the board is equal to total mass of the board and box multiplied by the acceleration of the system.

5 0
3 years ago
If your weight is 100N and you run up a flight of stairs that is 6 m high and it takes
fenix001 [56]

Answer:

power=300watt

Explanation:

5 0
3 years ago
A 25-cm rod moves at 5. 0 m/s in a plane perpendicular to a magnetic field of strength 0. 25 t. the rod, velocity vector, and ma
Bad White [126]

Length L = 25 cm = 0.25 m,  B = 600 G =  0.06 T ( 1G = 0.0001 T)

emf= 10 V

Solution:

emf = vBL

v= emf / BL

5 = emf/ (0.25 T× 0.25 m)

emf = 0.3125 v

Magnetic field

The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field.

To learn more about the magnetic field refer here:

brainly.com/question/23096032

#SPJ4

5 0
2 years ago
ONLINE CALCULATOR .A force of 187 pounds makes an angle of 73 degrees 36 ' with a second force. The resultant of the two forces
saul85 [17]

Answer:

The magnitudes of the second force is   Z = 129.9 N

The magnitudes of the  resultant force is   R = 256.047 N

Explanation:

From the question we are told that  

    The force is  F = 187 \ lb

     The angle made with second force \theta_o = 73 ^o 36' =  73 + \frac{36}{60}  =  73.6^o

     The angle between the resultant force and the first force \theta _1  = 29 ^o 1 ' = 29 + \frac{1}{60}  = 29.0167^o

For us to solve problem we are going to assume that

     The magnitude of the second force is  Z N

     The magnitude of the resultant force is R N

According to Sine rule

                \frac{F}{sin (\theta _o - \theta_1 }  = \frac{Z}{\theta _1}

Substituting values

             \frac{187}{sin(73.3 - 29.01667)} =\frac{Z}{sin (29.01667)}  

             267.82 =\frac{Z}{0.4851}  

              Z = 129.9 N

According to cosine rule

       R = \sqrt{F ^2 + Z^2 + 2(F) (Z) cos (\theta _o) }

Substituting values

     R = \sqrt{187^2 + 129.9 ^2  + 2 (187 ) (129.9) cos (73.6)}

     R = 256.047 N

 

3 0
3 years ago
What is the average speed of a car that travels 40 mph for 1 hour and 60 mph in another hour?
svetoff [14.1K]

Average speed = (total distance covered) / (time to cover the distance)

-- Traveling at 40 mph for 1 hour, the distance covered is 40 miles.

-- Traveling at 60 mph for 1 hour, the distance covered is 60 miles.

-- Total distance covered = (40 miles) + (60 miles) = 100 miles

-- Total time = (1 hour) + (1 hour)  =  2 hours

-- Average speed = (100 miles) / (2 hours)

<em>Average speed = 50 miles per hour</em>

6 0
3 years ago
Other questions:
  • A mirror produces an image that is located 34.0 cm behind the mirror when the object is located 7.50 cm in front of the mirror.
    7·1 answer
  • Which terrestrial planet experiences the shortest year?
    15·1 answer
  • which of the following describes how the Earth's magnetic pole is related to its geographical poles? A. the magnetic poles and g
    12·1 answer
  • A pronghorn, the fastest North American animal, is capable of running for at 18 m/s (40 mph) for 10 minutes. The time limit isn’
    10·1 answer
  • Why does the air pressure inside the tires of a car increase when the car is driven?
    6·1 answer
  • The SI unit for force is the newton. Which of the following is equivalent to a newton? A. kg/m B. kg·m/s2 C. kg·m/s D. kg·m/s
    11·2 answers
  • The tortoise and the hare are having a race over a course of length 0.52 km. The tortoise crawls along at a constant 0.075 m/s w
    12·1 answer
  • How are mathematics and science related?
    11·1 answer
  • (Please Help! Match the sentence to the number down below! Please I'll give brainlist and points!)
    10·1 answer
  • 5. Which of the following conduct electricity the best?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!