Center of rhombus bisects 90°.
Sum of angles in triangle = 180°
x + x + 14 + 90 = 180
2x + 104 = 180
2 (x + 52) = 180
x = (180 ÷ 2) - 52
x = 90 - 52
x = 38°
Nearly 81 moons will be required to equate the mass of moon to the mass of earth.
Step-by-step explanation:
Mass of earth is 5.972*10^24 kg.
Mass of the moon is 7.36*10^25 g = 7.36*10^22 kg
As mass of the Earth is given as 5.972 * 10^24 kg and mass of the moon is given as 7.36 * 10^22 kg, then the number of moons required to make it equal to the mass of earth can be calculated by taking the ratio of mass of earth to moon.
Mass of Earth = Number of moons * Mass of Moon
Number of Moons = Mass of Earth/Mass of moon
Number of moons = 5.972 * 10^24/7.36*10^22= 81 moons.
So nearly 81 moons will be required to equate the mass of moon to the mass of earth.
...... I need this as well please help us!!!
Nope anyway marry Christmas
Answer:
It's like solving a quadratic, but in reverse, and in this case you'll arrive at x2+x−12=0
Explanation:
We're going to go "backwards" with this problem - normally we're asked to take a quadratic equation and find the roots. So we'll do what we normally do, but in reverse:
Let's start with the roots:
x=3, x=−4
So let's move the constants over with the x terms to have equations equal to 0:
x−3=0, x+4=0
Now we can set up the equation, as:
(x−3)(x+4)=0
We can now distribute out the 2 quantities:
x2+x−12=0