The temperature change is calculated using the combined gas law
that is P1V1/T1 =P2V2/T2
P1= 100KPa
P2=90kpa
v1= 2.50 L
v2= 3.75 L
T1= 303 K
T2=?
T2 is therefore = P2V2T1/P1V1
=( 90 x 3.75 x303)/ (100 x2.50) = 409.05 K
its C) 113.21g
u just add all the masses
Answer:
1 .
2.
Explanation:
The more stable the ionic compound, the more is it lattice energy.
- The more the charge on the cation and the anion, the greater is the lattice energy.
- The less the size of the cation and the anion, the greater is the lattice energy.
Scandium oxide (
) is an oxide in which
behaves as cation and
behaves as anion.
The compounds which has higher lattice energy than scandium oxide are:
1 .
This is because the charge are same on the cation and the anion as in the case of the Scandium oxide but the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
2.
This is because the charge on the cation
is greater than that of
and also the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
Answer:
The answer is "17200 years".
Explanation:
Given:
Let the half-life of carbon-14, is beta emitter, is
Constant decay
The artifact age 
