Elements 3 to 10 (Li to Ne) show a more or less steady increase in ionization energy.
<h3>What is ionisation energy?</h3>
The amount of energy required to remove an electron from an isolated atom or molecule.
The major difference is the increasing number of protons in the nucleus as you go from lithium to neon. That causes greater attraction between the nucleus and the electrons and so increases the ionization energies. In fact the increasing nuclear charge also drags the outer electrons in closer to the nucleus.
Learn more about the ionisation energy here:
brainly.com/question/20658080
#SPJ1
We are given the amount of Nitrogen gas and hydrogen gas reacted to form ammonia:
N2 = 19.25 grams
H2 = 11.35 grams
Set-up a balanced chemical equation:
N2 + 3H2 ==> 2NH3
The theoretical amount of ammonia that will be produced from the given amounts is:
First, we need to determine the limiting reactant to serve as our basis for calculation.
number of moles / stoichiometric ratio
N2 = 19.25 g/ 28 g/mol / 1 = 0.6875
H2 = 11.35 g/ 2 g/mol /3 = 1.89
The limiting reactant is N2.
0.6875 moles N2 * (2 NH3/ 1 N2) * 17 g/mol NH3
The amount of NH3 produced is 23.375 grams of ammonia. <span />
Answer:
Option B.
Explanation:
As any reaction of combustion, the O₂ is a reactant and the products are CO₂ and H₂O. Combustion reaction for ethane is:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
So 2 moles of ethane react with 7 moles of oxygen to make 4 moles of dioxide and 6 moles of water.
Then 2 moles of ethane will produce 4 moles of CO₂