The average velocity of Sandy is given by the total distance covered S divided by the total time taken t:

The total distance covered is

while the total time taken is 2 hours + half an hour (for the rest) + 1 hour and half, so

Therefore, the average velocity is
<span>covalent bond I think </span>
Explanation:
They believe that vortexes occur at the planet's north pole because of atmospheric flows deep within the gas giant, and that these vortexes pinch an intense horizontal jet near the equator—which is what warps the storm into a hexagon
Assuming that you're given either an initial or final velocity, you can use the following equation and solve for the initial or final velocity.
Vyf² = Vyi² - 2g(y - y₀)
Where,
Vyf² = final velocity
Vyi₂² = initial velocity
g = 9.81 m/s²
(y - y₀) = the change in the distance along the y-axis.
You'll need also determine the positive and negative of your y-axis for your final solution because velocity can be positive or negative based on direction. Lastly, don't forget to square root both sides of your equation for your velocity.
I hope this helps.