Assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Missing part of the question: determine the magnitude of Porsha's acceleration.
Given the data in the question;
- Mass of Porsha;

- Mass of Zorn;

- Force of Porsha push;

Magnitude of Porsha's acceleration; 
To determine the magnitude of Porsha's acceleration, we use Newton's second laws of motion:

Where m is the mass of the object and a is the acceleration.
We substitute the mass of Porsha and the force he used into the equation
Therefore, assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Learn more: brainly.com/question/25125444
For this, you need the v-squared equation, which is v(final)² = v(initial)² + 2aΔx
The averate acceleration is thus a = (v(final)² - v(initial)²) / 2Δx = (20² - 15²) / 2(50) = 175 / 100 = 1.75 m/s²
So the average acceleration is 1.75 m/s²
Answer:
λ = 8.88 x 10⁻⁷ m = 888 nm
Explanation:
The energy band gap is given as:
Energy Gap = E = 1.4 eV
Converting this to Joules (J)
E = (1.4 eV)(1.6 x 10⁻¹⁹ J/1 eV)
E = 2.24 x 10⁻¹⁹ J
The energy required for photovoltaic generation is given as:
E = hc/λ
where,
h = Plank's Constant = 6.63 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = ?
Therefore,
2.24 x 10⁻¹⁹ J = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.24 x 10⁻¹⁹ J)
<u>λ = 8.88 x 10⁻⁷ m = 888 nm</u>
Answer:
C is the right answer.
Body massager uses electrical energy to move back and forth. In this sense, a motor is being used for the operation