1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
13

The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig

ht difference from the upper to the lower channels is about 2 m and the distance between them is about 100 m. How large a pipe is needed to carry the flow? State any assumptions you make
Physics
2 answers:
Maru [420]3 years ago
7 0

Answer: 2738.5 cubic metres

Explanation: Given that

Flow rate Q = 350m^3/s

Height h = 2m

Distance x = 100m

Using pythagorean theorem to find the length L of the pipe

L^2 = 100^2 + 2^2

L^2 = 10004

L = 100.02 m

Let assume that the pipe is uniform of same diameter at both ends and water flows through the pipe

Let also consider the atmospheric pressure at the upper channel

Using bernoulli equation

P1 = P2 + 1/2pV^2

Where P2 = phg

P1 = atmospheric pressure = 101325pa

V = velocity

p = density = 1000kg/m3

101325 = 1000×9.81×2 + (0.5×1000V^2)

101325 - 19620 = 500V^2

81705 = 500V^2

V^2 = 163.41

V = 12.8 m/s

Q = V × A

Where A = area of the pipe

A = Q/V

A = 350/12.8 = 27.4 square metre

The volume of the pipe = A × L

Volume = 27.4 × 100.02

Volume = 2738.5 cubic metres

The volume of the pipe determines how large a pipe is needed to carry the flow

Mariulka [41]3 years ago
6 0

Answer:

D ≈ 8.45 m

L ≈ 100.02 m

Explanation:

Given

Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)

y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)

x = 100.00 m (distance between the upper and the lower channels)

We assume that:

  • the upper and the lower channels are at the same pressure (the atmospheric pressure).
  • the velocity of water in the upper channel is zero (v₁ = 0 m/s).
  • y₁ = 2.00 m  (height of the upper channel)
  • y₂ = 0.00 m  (height of the lower channel)
  • g = 9.81 m/s²
  • ρ = 1000 Kg/m³ (density of water)

We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):

P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂

Plugging the known values into the equation and simplifying we get

Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)

⇒ v₂ = 6.264 m/s

then we apply the formula

Q = v*A  ⇒   A = Q/v ⇒   A = Q/v₂

⇒   A = (350 m³/s)/(6.264 m/s)

⇒   A = 55.873 m²

then, we get the diameter of the pipe as follows

A = π*D²/4   ⇒   D = 2*√(A/π)

⇒   D = 2*√(55.873 m²/π)

⇒   D = 8.434 m ≈ 8.45 m

Now, the length of the pipe can be obtained as follows

L² = x² + h²

⇒ L² = (100.00 m)² + (2.00 m)²

⇒ L ≈ 100.02 m

You might be interested in
What is the resultant of the two vectors shown?
BARSIC [14]

Answer:

B is the right answer of the following statement

5 0
3 years ago
A student performing a double-slit experiment is using a green laser with a wavelength of 550 nm. She is confused when the m = 5
sweet [91]

Answer:

d = 52 μm

Explanation:

given,

wavelength of the light source (λ)= 550 nm

distance to form interference pattern(D) = 1.5 m

y = 1.6 cm = 0.016 m

width of the slits = ?

now, using displacement formula

 y = \dfrac{m\lambda\ D}{d}

for the first maxima, m = 1

 d = \dfrac{1\times \lambda\ D}{y}

 d = \dfrac{1\times  550 \times 10^{-9}\times 1.5}{0.016}

       d = 5.2 x 10⁻⁶ m

       d = 52 μm

hence, the width of her slits is equal to d = 52 μm

3 0
4 years ago
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
rjkz [21]

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

3 0
3 years ago
Read 2 more answers
Mercury was named after the roman god of speed why is it an appropriate name for the planet
elena-14-01-66 [18.8K]
Because it's the planet in our solar system with the shortest,
fastest orbit around the sun ... only 88 Earth days.

The people who named it didn't know that ... they still thought that
the sun and all the planets revolve around the Earth.  But they did
see it zip from one side of the sun to the other, faster than any other
planet ... the result of having the shortest, fastest orbit of any planet.
5 0
4 years ago
Please helppppppp!!!!!!!!!!!!!!
azamat

Answer:

circuit breaker

Explanation:

A circuit breaker is a device used for electrical safety. It consists of a switch designed to protect an electrical circuit from damage that may result from heating due to overload in the circuit.

Its basic function is to interrupt current flow through its switch that consists of metal stripe which bends when it gets hot.

Fuse has similar action with circuit breaker, the only difference is that fuse can only be used once because it melts when it gets hot.

Therefore, the correct answer is "circuit breaker"

8 0
3 years ago
Other questions:
  • A test rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward
    6·1 answer
  • What is flens, the focal length of the lens? if the lens is converging flens is positive. it the lens is diverging, flens is neg
    15·1 answer
  • What do astronomers call a system that is composed of more than two stars
    15·1 answer
  • Newton's laws of motion works well for ordinary situations on earth. However, these laws of motion do not work for all cases. In
    5·1 answer
  • Why does the vertical component of velocity for a projectile change with time, whereas the horizontal component of velocity does
    11·1 answer
  • Which of the following correctly compares UV rays and infrared waves?
    12·2 answers
  • If a star contains a certain element, it can be determined by studying the star’s
    12·1 answer
  • Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The d
    15·1 answer
  • NICEEeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee<br><br><br><br><br><br><br>.
    12·1 answer
  • GIVING BRAINLIEST PLEASE HELP!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!