1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
2 years ago
13

The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig

ht difference from the upper to the lower channels is about 2 m and the distance between them is about 100 m. How large a pipe is needed to carry the flow? State any assumptions you make
Physics
2 answers:
Maru [420]2 years ago
7 0

Answer: 2738.5 cubic metres

Explanation: Given that

Flow rate Q = 350m^3/s

Height h = 2m

Distance x = 100m

Using pythagorean theorem to find the length L of the pipe

L^2 = 100^2 + 2^2

L^2 = 10004

L = 100.02 m

Let assume that the pipe is uniform of same diameter at both ends and water flows through the pipe

Let also consider the atmospheric pressure at the upper channel

Using bernoulli equation

P1 = P2 + 1/2pV^2

Where P2 = phg

P1 = atmospheric pressure = 101325pa

V = velocity

p = density = 1000kg/m3

101325 = 1000×9.81×2 + (0.5×1000V^2)

101325 - 19620 = 500V^2

81705 = 500V^2

V^2 = 163.41

V = 12.8 m/s

Q = V × A

Where A = area of the pipe

A = Q/V

A = 350/12.8 = 27.4 square metre

The volume of the pipe = A × L

Volume = 27.4 × 100.02

Volume = 2738.5 cubic metres

The volume of the pipe determines how large a pipe is needed to carry the flow

Mariulka [41]2 years ago
6 0

Answer:

D ≈ 8.45 m

L ≈ 100.02 m

Explanation:

Given

Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)

y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)

x = 100.00 m (distance between the upper and the lower channels)

We assume that:

  • the upper and the lower channels are at the same pressure (the atmospheric pressure).
  • the velocity of water in the upper channel is zero (v₁ = 0 m/s).
  • y₁ = 2.00 m  (height of the upper channel)
  • y₂ = 0.00 m  (height of the lower channel)
  • g = 9.81 m/s²
  • ρ = 1000 Kg/m³ (density of water)

We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):

P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂

Plugging the known values into the equation and simplifying we get

Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)

⇒ v₂ = 6.264 m/s

then we apply the formula

Q = v*A  ⇒   A = Q/v ⇒   A = Q/v₂

⇒   A = (350 m³/s)/(6.264 m/s)

⇒   A = 55.873 m²

then, we get the diameter of the pipe as follows

A = π*D²/4   ⇒   D = 2*√(A/π)

⇒   D = 2*√(55.873 m²/π)

⇒   D = 8.434 m ≈ 8.45 m

Now, the length of the pipe can be obtained as follows

L² = x² + h²

⇒ L² = (100.00 m)² + (2.00 m)²

⇒ L ≈ 100.02 m

You might be interested in
You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
Marina CMI [18]

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

3 0
2 years ago
Steroid use in females can cause masculine characteristics, such as lower voice and increased body hair." True False
s344n2d4d5 [400]

Answer:

True

Explanation:

Side affects can range from

Problems with periods to Loss of breasts

7 0
2 years ago
explain how many minimum number of geostationary satellites are required for global coverage of T.V transmission
kobusy [5.1K]

Answer:I honestly don't know

Explanation:

4 0
3 years ago
Which type of wave does the illustration depict?
Naddika [18.5K]
A transverse wave. A wave is a disturbance that transmits energy from one place to another by the particles of the medium.
4 0
2 years ago
Read 2 more answers
1. Driving at slower speeds than traffic flow _____________ .
r-ruslan [8.4K]

<u>The correct option is (D). The strength of electric field depends on the amount of charge that produces the field as well as the distance from the charge. </u>

<u> </u>

Further Explanation:

The electric field intensity at a point is the measure of the force exerted by a charge particle on another charge particle in the particular area of its strength.

The electric field intensity at a distance d due to a static charge having charge q is directly proportional to the amount of charge and inversely proportional to the square of the distance between them.

The Electric field intensity due to a charge is given as:

E = \dfrac{1}{{4\pi {\varepsilon _0}}}\frac{q}{{{r^2}}}

Here, E is the electric field intensity, q is the amount of charge and r is the distance of the charge from the point.

The above expression of electric field shows that the electric field intensity at a point depends on the amount of charge as well as the distance of the point from the charge.

<u>Thus, the correct option is (D). The strength of electric field depends on the amount of charge that produces the field as well as the distance from the charge. </u>

<u> </u>

Learn More:

1. The results of Rutherford’s gold foil experiment demonstrated that thehttps://brainly.com/question/1542931

2. A capacitor with capacitance (c) = 4.50 μf is connected to a 12.0 v batteryhttps://brainly.com/question/8892837

3. A point charge of 7.45 pc is fixed at the originhttps://brainly.com/question/11098511

Answer Details:

Grade: Senior school

Subject: Physics

Chapter: Electrostatics

Keywords:  Strength, electric field, charge, distance, electric field intensity, magnitude of charge, electrostatic, test charge, kq/r^2.

7 0
3 years ago
Read 2 more answers
Other questions:
  • The magnetic fields in all planets are generated by the dynamo effect, caused by rapidly rotating and conducting material flowin
    15·1 answer
  • What prominent sea floor fetaure is found in the central altlantic ocean
    15·1 answer
  • A solid conducting sphere with radius RR that carries positive charge QQ is concentric with a very thin insulating shell of radi
    7·1 answer
  • To measure specific heat, the student flows air with a velocity of 20 m/s and a temperature of 25C perpendicular to the length
    14·1 answer
  • Two helium-filled balloons are released simultaneously at points A and B on the x axis in an earth-based reference frame. Balloo
    10·1 answer
  • What clues are useful in reconstructing pangaea
    6·2 answers
  • Disadvantages of friction
    12·1 answer
  • What amount of energy is needed for an electron to jump from n = 1 to n = 4?
    13·1 answer
  • Suppose we wish to use a 8.0 m iron bar to lift a heavy object by using it as a lever. If we place the pivot point at a distance
    13·1 answer
  • In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!