1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
13

The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig

ht difference from the upper to the lower channels is about 2 m and the distance between them is about 100 m. How large a pipe is needed to carry the flow? State any assumptions you make
Physics
2 answers:
Maru [420]3 years ago
7 0

Answer: 2738.5 cubic metres

Explanation: Given that

Flow rate Q = 350m^3/s

Height h = 2m

Distance x = 100m

Using pythagorean theorem to find the length L of the pipe

L^2 = 100^2 + 2^2

L^2 = 10004

L = 100.02 m

Let assume that the pipe is uniform of same diameter at both ends and water flows through the pipe

Let also consider the atmospheric pressure at the upper channel

Using bernoulli equation

P1 = P2 + 1/2pV^2

Where P2 = phg

P1 = atmospheric pressure = 101325pa

V = velocity

p = density = 1000kg/m3

101325 = 1000×9.81×2 + (0.5×1000V^2)

101325 - 19620 = 500V^2

81705 = 500V^2

V^2 = 163.41

V = 12.8 m/s

Q = V × A

Where A = area of the pipe

A = Q/V

A = 350/12.8 = 27.4 square metre

The volume of the pipe = A × L

Volume = 27.4 × 100.02

Volume = 2738.5 cubic metres

The volume of the pipe determines how large a pipe is needed to carry the flow

Mariulka [41]3 years ago
6 0

Answer:

D ≈ 8.45 m

L ≈ 100.02 m

Explanation:

Given

Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)

y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)

x = 100.00 m (distance between the upper and the lower channels)

We assume that:

  • the upper and the lower channels are at the same pressure (the atmospheric pressure).
  • the velocity of water in the upper channel is zero (v₁ = 0 m/s).
  • y₁ = 2.00 m  (height of the upper channel)
  • y₂ = 0.00 m  (height of the lower channel)
  • g = 9.81 m/s²
  • ρ = 1000 Kg/m³ (density of water)

We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):

P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂

Plugging the known values into the equation and simplifying we get

Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)

⇒ v₂ = 6.264 m/s

then we apply the formula

Q = v*A  ⇒   A = Q/v ⇒   A = Q/v₂

⇒   A = (350 m³/s)/(6.264 m/s)

⇒   A = 55.873 m²

then, we get the diameter of the pipe as follows

A = π*D²/4   ⇒   D = 2*√(A/π)

⇒   D = 2*√(55.873 m²/π)

⇒   D = 8.434 m ≈ 8.45 m

Now, the length of the pipe can be obtained as follows

L² = x² + h²

⇒ L² = (100.00 m)² + (2.00 m)²

⇒ L ≈ 100.02 m

You might be interested in
Found ones similar, but not with this question. Someone help?
agasfer [191]

The distance between the plates is 7.1 * 10^-7 m

<h3>What is the distance?</h3>

The capacitor is a device that is used to store charges. The capacitor always has a dielectric that is placed between the capacitors that separates them.

Given that;

C = εoA/d

C = capacitance

εo = permittivity of free space

A = cross sectional area

d = distance apart

Cd = εoA

d = εoA/C

d = 8.8 * 10^-12 * 8.89 * 10^-4/1.11 * 10^-8

d = 7.1 * 10^-7 m

Learn more about capacitor:brainly.com/question/17176550

#SPJ1

6 0
2 years ago
A wire carries a current in the x-direction. a positively charged particle moves in the –x-direction near the current-carrying w
Maslowich

A magnetic field is experienced by the charged particle in the +y direction.

Discussion:

  • The right thumb rule states that the magnetic field lines will be perpendicular in the area to the conductive wire's left in which the electric potential is traveling.
  • The direction of the current may be determined by looking at the positive charge's (X direction) motion. According to Fleming's left-hand rule, the force on a positive charge will be in the +y direction because the positive charge is moving in a leftward direction, which will also be the direction of the current.

Fleming's left-hand rule:

In accordance with Fleming's Left Hand Rule, the thumb, forefinger, and middle finger of the left hand should be positioned perpendicular to one another. The thumb should point in the path of the power exerted by the conductors, the forefinger should point in the magnetic field direction, and the middle finger should point in the path of the electric current.

Learn more about the magnetic fields here:

brainly.com/question/14848188

#SPJ4

8 0
2 years ago
Nuclear energy is..
AlexFokin [52]

I am going to say

C.  Energy contained in the nucleus of an atom

4 0
4 years ago
What creates the energy of the Sun?
Svet_ta [14]

Answer:

C

Explanation:

During nuclear fusion, the high pressure and temperature in the sun's core cause nuclei to separate from their electrons. Hydrogen nuclei fuse to form one helium atom.

5 0
3 years ago
(a) What is the escape speed on a spherical asteroid whose radius is 500. km and whose gravitational acceleration at the surface
navik [9.2K]

Answer:

a) v= 1732.05m/s

b) d=250000m

c) v= 1414.214m/s

Explanation:

Notation

M= mass of the asteroid

m= mass of the particle moving upward

R= radius

v= escape speed

G= Universal constant

h= distance above the the surface

Part a

For this part we can use the principle of conservation of energy. for the begin the initial potential energy for the asteroid would be U_i =-\frac{GMm}{R}.

The initial kinetic energy would be \frac{1}{2}mv^2. The assumption here is that the particle escapes only if is infinetely far from the asteroid. And other assumption required is that the final potential and kinetic energy are both zero. Applying these we have:

-\frac{GMm}{R}+\frac{1}{2}mv^2=0   (1)

Dividing both sides by m and replacing \frac{GM}{R} by a_g R

And the equation (1) becomes:

-a_g R+\frac{1}{2} v^2=0   (2)

If we solve for v we got this:

v=\sqrt{2 a_g R}=\sqrt{2x3\frac{m}{s^2}x500000m}=1732.05m/s

Part b

When we consider a particule at this surface at the starting point we have that:

U_i=-\frac{GMm}{R}

K_i=\frac{1}{2}mv^2

Considering that the particle is at a distance h above the surface and then stops we have that:

U_f=-\frac{GMm}{R+h}

K_f=0

And the balance of energy would be:

-\frac{GMm}{R}+\frac{1}{2}mv^2 =-\frac{GMm}{R+h}

Dividing again both sides by m and replacing \frac{GM}{R} by a_g R^2 we got:

-a_g R+\frac{1}{2}v^2 =-\frac{a_g R^2}{R+h}

If we solve for h we can follow the following steps:

R+h=-\frac{a_g R^2}{-a_g R+\frac{1}{2}v^2}

And subtracting R on both sides and multiplying by 2 in the fraction part and reordering terms:

h=\frac{2a_g R^2}{2a_g R-v^2}-R

Replacing:

h=\frac{2x3\frac{m}{s^2}(500000m)^2}{2(3\frac{m}{s^2})(500000m)-(1000m/s)^2}- 500000m=250000m

Part c

For this part we assume that the particle is a distance h above the surface at the begin and start with 0 velocity so then:

U_i=-\frac{GMm}{R+h}

K_i=0

And after the particle reach the asteroid we have this:

U_f=-\frac{GMm}{R}

K_f=\frac{1}{2}mv^2

So the balance of energy would be:

-\frac{GMm}{R+h}=-\frac{GMm}{R}+\frac{1}{2}mv^2

Replacing again a_g R^2 instead of GM and dividing both sides by m we have:

-\frac{a_g R^2}{R+h}=-a_g R+\frac{1}{2}v^2

And solving for v:

a_g R-\frac{a_g R^2}{R+h}=\frac{1}{2}v^2

Multiplying both sides by two and taking square root:

v=\sqrt{2a_g R-\frac{2a_g R^2}{R+h}}

Replacing

v=\sqrt{2(3\frac{m}{s^2})(500000m)-\frac{2(3\frac{m}{s^2}(500000m)^2}{500000+1000000m}}=1414.214m/s

3 0
3 years ago
Other questions:
  • A conducting coil of 1785 turns is connected to a galvanometer, and the total resistance of the circuit is 43.9 Ω. The area of e
    14·1 answer
  • A merry-go-round starts from rest and reaches the angular speed of 4 rpm in the first two minutes. what would be the angular acc
    8·1 answer
  • Which nuclear emission has the greatest penetrating power
    13·1 answer
  • An amount of nitrogen undergoes a physical change and increases its volume. What can be known about this physical change?
    5·2 answers
  • A glass plate (n = 1.64) is covered with a thin, uniform layer of oil (n = 1.27). A light beam of variable wavelength from air i
    12·1 answer
  • A block of mass m = 2.0 kg slides head on into a spring of spring constant k = 260 N/m. When the block stops, it has compressed
    13·1 answer
  • What are the variables of Boyle's law?
    5·1 answer
  • WHO WANTS BRAINLIEST THEN ANSWER THIS QUESTION
    6·1 answer
  • Carly rode her bike for 300 meters in 30 seconds. One can calculate her​
    9·1 answer
  • What is accerlation due to gravity?? ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!